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Abstract

The threat of flooding from landfalling tropical cyclones isa function of the local variation in rain

rate and rain accumulation. To date, these have been inferred from single-frequency radar reflec-

tivity measurements. However, the Tropical Rainfall Measuring Mission experience has confirmed

that one of the main difficulties in retrieving rain profiles using a single-frequency radar is the

unknown raindrop size distribution (DSD). A dual-frequency radar such as the one planned for

the up-coming Global Precipitation Measurement (GPM) coresatellite is expected to help sort out

at least part of this DSD-induced ambiguity. However, the signature of precipitation at 14 GHz

does not differ greatly from its signature at 35 GHz (the GPM radar frequencies). In order to de-

termine the extent of the vertical variability of the DSD in tropical systems and to quantify the

effectiveness of a dual-frequency radar in resolving this ambiguity, we consider several different

models of DSD shape, and use them to estimate the rain-rate and mean-diameter profiles from the

measurements made by JPL’s airborne PR-2 radar over hurricanes Gabrielle and Humberto during

the CAMEX-4 experiment in September 2001. It turns out that the vertical structures of the rain

profiles retrieved from the same measurements under different DSD assumptions are similar, but

the profiles themselves are quantitatively significantly different.
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I. INTRODUCTION

Once a tropical cyclone makes landfall, one of its main destructive threats is the flooding it often

causes. This threat of flooding is a function of the rain rate as well as the total surface rain accu-

mulation. The precipitation can be quite drastically affected by local orographic forcing as well

as interactions with any mid-latitude frontal boundaries or upper-level troughs. That is why it is

very desirable to monitor the rainfall within tropical cyclones at fine temporal and spatial scales.

While this can be achieved using weather radar, the measurement of surface rainfall with radar is

not without problems, chief among them being the dependenceof the non-linear relation between

the measured radar reflectivitiesZ and the underlying rain rateR on the sizes of the rain drops.

The latter can vary significantly within a tropical cyclone.In convective areas, large hydromete-

ors tend to precipitate out locally, while smaller ones tendto be carried aloft to be precipitated

out in stratiform areas. Since the reflectivity of a rain dropis roughly proportional to the square

of its mass, small errors in the a-priori assumption about the drop sizes in any given column of

rain can easily produce large errors in the inferred rain rate. This problem has been dealt with

in two ways. A concerted effort has been made to describe the drop size distribution (DSD) in

various rain regimes using in-situ measurements obtained by ground-based disdrometers as well

as airborne optical probes. While such data can yield statistical descriptions about rain drop size

variability, they are limited by the fact that the instruments involved can only sample a minuscule

volume of air relative to the large volumes that are probed byeven the highest resolution radars.

It is therefore not at all clear how representative the statistics obtained from in-situ data are of the

rain in any specific precipitating column. An alternate procedure to quantify these statistics and to

make them more specifically relevant to any particular area within a tropical cyclone is to design

radars which can simultaneously measure both the rain rate and the underlying mean drop size.
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This approach requires a dual-frequency radar, with the assumption that the reflectivities measured

at two different frequencies depend in an invertible way on the underlying rain rate and mean drop

size. Indeed, the original proposal for the precipitation radar designed for the Tropical Rainfall

Measuring Mission (TRMM) specified a Ku-band as well as a Ka-band channel. The latter was

eventually dropped due to budget constraints, but the dual-frequency design is being implemented

for the up-coming Global Precipitation Mission.

The rain-profiling algorithm development and validation effort undertaken for TRMM has con-

firmed that one of the main difficulties surrounding the retrieval of rain rate profiles from space-

borne radar reflectivity measurements is the unknown DSD. Indeed, if one starts with the assump-

tion that the DSD is always an exponential (or, at worst, a gamma) distribution, whose dependence

on the rain rate is known a priori, one can then derive power-law relationsZ = aRb andk = αRβ

which very adequately relate the 14-GHz radar reflectivity factorZ and the 14-GHz attenuation

coefficientk to the rain rateR. It follows (see e.g. Haddad et al, 1995) that the one-way path-

integrated attenuationPIA, integrated over a vertical rain column, must be related to the 14-GHz

measured reflectivitiesZm in that column by

PIA =

(

1 − 0.2log(10)α
β
b

Z

(Zm/a)β/b
)b/β

(1)

Figure 1 is a plot of thePIA values obtained from the TRMM radar measurements over the ocean

during several orbits by comparing the rainy surface returnwith the average surface return from the

nearby clear-air regions. This “surface-reference” PIA isshown on the horizontal axis, while the

vertical axis represents the right-hand-side of (1) calculated with two different DSD assumptions

(corresponding to a few different sets of constanta, b, α andβ). The left panel shows the result of

using the a-priori values of the parametersa, b, α andβ in the TRMM radar algorithm (Iguchi et

al, 2000); the right panel shows the result of using those parameters in the multiple-DSD TRMM



5

combined radar/radiometer algorithm (Haddad et al, 1997a)which produce the largest attenuation.

If (1) were verified exactly, one would expect much less scatter than is evident in the plots. Indeed,

for one-way attenuations below 1.5 dB, there does not seem tobe any correlation between the two

sides of (1), though there is a clear tendency for theZ-calculated values to be much smaller than

the surface-referenced ones. This apparent failure of equation (1) could be caused in part by the

change in the surface backscattering cross-section due to the variation of the wind from the clear

air regions to the rainy area. But a systematic increase or decrease of the backscattering within the

precipitation would result in a bias of the estimates. The fact that such a bias is not evident in the

figure leads to the conclusion that whatever systematic change in the wind between the clear and

rainy areas is not sufficient to explain the large mismatch inPIA’s at moderate and low precipita-

tion. Indeed, this discrepancy constitutes compelling evidence that the DSD parameters vary very

significantly over a rain column.

In the case of TRMM, this DSD problem has been dealt with in twoways. In the radar algorithm,

(1) is used to adjust the ratioαβ/b and thus reduce the ambiguity, at least in the case of heavier

precipitation. In the Bayesian framework of the TRMM combined radar/radiometer algorithm,

(1) is used to weight the candidate a-priori DSD’s in favor ofthe better-matching ones, and the

observed radiances are also used to further constrain the multiple possibilities for the DSD. The

dual-frequency radar which the Global Precipitation Measurement (GPM) mission’s core satellite

will carry should prove a much more effective tool in sortingout at least part of this DSD-induced

ambiguity. Indeed, with two radar reflectivity profiles, onewould expect to be able to retrieve not

just a single rain rate profile, but in addition at least one “first order” DSD profile, e.g. a profile of

the (mass-weighted) mean drop diameterD∗. Unfortunately, this expectation may turn out to be
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difficult to fulfill, because the reflectivity profiles at the two radar frequencies are far from indepen-

dent. After all, lighter rain is made up mostly of small drops. As figure 2 shows, the backscattering

cross-section of small drops is not significantly differentat 14 and 35 GHz. One would therefore

not expect large differences in the associated radar reflectivity factors. While the difference in the

extinction cross-section appears more readily exploitable for small drops, its actual magnitude is

unfortunately so small that the resulting attenuation is not significant for light precipitation. At

the other extreme, while the attenuation will be appreciable (at both frequencies) for heavy rain,

it is in fact likely to be so appreciable as to drive the back-scattered 35-GHz signal itself below

the sensitivity threshold of that channel. Thus, the two frequencies are not very different at low

rain rates, and they will in effect reduce to a single frequency at high rain rates, leaving a some-

what disappointing range over which the two frequencies canbe realistically expected to resolve

the DSD-induced ambiguity problem. That is why it is at leastas important for GPM as it was

for TRMM to develop an optimal approach to extract from all the GPM core satellite’s measure-

ments profiles of the best unbiased estimates of the means of the rain rateR and mass-weighted

mean diameterD∗. The purpose of this paper is to quantify the effect of different plausible a-priori

assumptions about the possible shapes of the DSD on the retrieved precipitation profiles using

tropical cyclone data from CAMEX-4.

The aim of this work is not to propose a specific retrieval methodology. Many dual-frequency

rain-profiling algorithms have been proposed to date, starting with those developed by Eccles

and Muller (1971), Fujita (1983), Meneghini and Nakamura (1990), and Marzoug and Amayenc

(1994). These approaches start by making some simplifying assumptions to reduce the DSD descr-

pition to an analytic form using two parameters, and proceedto prescribe a procedure to retrieve
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the latter given a pair of reflectivity profiles at two frequencies. Our goal is to assess the effect

of a-priori DSD assumptions, including the possibility of considering DSD’s that are not given by

any analytic form but rather coming directly from extensivecollections of in-situ measurements.

That is why we tried to avoid any specific deterministic retrieval algorithms, and relied instead on

obtaining Bayesian estimates of the (conditional) mean rain rate and mass-weighted mean drop

diameter, given the measured reflectivities and given each a-priori model of the “allowed” DSD

shapes. The models considered are listed in section 2, and the Bayesian estimation is discussed in

section 3. The results for the CAMEX-4 data are described in section 4.

II. D IFFERENT DSD MODELS

We shall consider five well-documented liquid DSD models. Nodiscussion of DSD’s can be com-

plete without considering Marshall and Palmer’s exponential form (Marshall and Palmer, 1948)

NMP(D) = N0e−ΛD (2)

in which, if we assume a nominal terminal fall velocity of 9.56(1− e−0.53D) m/s for drops of

diameterD mm, the parametersN0 andΛ must be consistent withR, i.e. must satisfy

R = 0.11

(

1
Λ4 −

1
(Λ + 0.53)4

)

N0 mm/hr (3)

with N0 in mm−1 m−3. Thus, in addition toR, the exponentialNMP has a single free parameter. As

long as equation (3) is enforced, whether one chooses to identify this parameter asN0 or Λ makes

no difference whatsoever, and we shall chooseΛ, with the additional constraint that the ratio 4/Λ,

which is equal to the mass-weighted mean drop diameter, not exceed 3 mm. The second, third and

fourth DSD models which we consider are special cases of the gamma DSD

NΓ(D) = N0Dµe−ΛD . (4)
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This distribution effectively depends on two parameters inaddition toR. There are several ways of

constraining one of these parameters to end up with only two unknowns which can be solved for

using the two measured radar reflectivity factors. One that has proved consistent with disdrometer

and airborne 2D-probe (small) sample statistics consists in re-expressingµ andΛ in terms of the

mass-weighted mean drop diameterD∗ and the dimensionless relative mass-weighted r.m.s. diam-

eter deviations∗, and enforcing on the pair(D∗,s∗) the rather restrictive joint behavior quantified

by the sample statistics observed during the TOGA-COARE campaign (Lukas et al, 1995) and

during the 1992-1993 Darwin field measurements (Haddad et al, 1997b). Roughly, these restric-

tions amount to requiring thatD∗R−0.155 have a mean of about 1.1 (withR in mm/hr andD∗ in

mm) and a standard deviation of about 0.3, whiles∗D∗−0.165R−0.011, which has a mean of about

0.4 and a tiny standard deviation smaller than 0.05, is fixed at 0.4 so thatD′′ = D∗R−0.155 is the

independent DSD parameters in this case. We shall refer to the resulting “restricted” gamma DSD

model asNΓ0. This is the second DSD which we shall consider. It is the one used in the TRMM

combined radar/radiometer algorithm. The third and fourthDSD models are similar restrictions of

the gamma model, obtained from (4) by imposing a deterministic relation betweenN0 andµ. We

chose the relation (Ulbrich and Atlas, 1998)

N0 = 6734·e1.45µ mm−1−µm−3 (5)

for the third modelNΓ1, and the relation (Ulbrich, 1983)

N0 = 1500·e0.84µ mm−1−µm−3 (6)

for the fourth modelNΓ2. Finally, we also consider a model which does not depend on any closed

analytic form for the distribution functionN. After all, there is an enormous wealth of sampled

DSD’s measured from various probes, and there is no reason not to use a large subgroup of such
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samples as an a-priori database in lieu of a model. Indeed, for our fifth DSD “model”NC, we chose

the TOGA-COARE database of DSD samples collected by the NCAR2-D PMS probes mounted

on the NCAR Electra aircraft over the warm pool of the westernequatorial Pacific between Novem-

ber 1992 and February 1993. A principal component analysis (Meagher and Haddad, 2002), had

reduced this dataset and produced a more efficient way to codethe data. But the resulting savings

in computer resources (memory and processing) are not significant for the current study and we

used the original database of DSD samples itself.

The next step is to calculate the Mie extinction and back-scattering efficiencies as a function of

drop diameter. Once this is done, one can associate to each rain-rate/DSD pair(R,N) in any one of

our five models the corresponding radar reflectivity factorsz14(R,N) andz35(R,N) (in mm6 m−3),

and the corresponding attenuation coefficientsk14(R,N) andk35(R,N) (in dB/km). Figure 3 shows

the resulting “reflectivity manifolds” (to borrow a term dear to the passive radiometer community

– see e.g. Smith and Mugnai, 1988) for each of our DSD models. In the case ofNMP, NΓ0, NΓ1

andNΓ2, these manifolds were obtained by choosing a few representative values for the free DSD

parameter (Λ in the case ofNMP, NΓ1 andNΓ2, D′′ in the case ofNΓ0), and lettingR vary from 0.2

to 200 mm/hr. In the case ofNC, the manifold is computed directly from the DSD samples in the

database. In all cases, the value of the differencez14(R,N)−z35(R,N) is plotted versusz14(R,N).

The first observation is that, for all five DSD models, when the14-GHz reflectivities are small, the

rain rate curves are almost horizontal, confirming our previous observation that for lighter precipi-

tation there is no significant difference between the two frequencies.

There are two additional facts illustrated by the figure which are crucial to the retrieval problem.

The first is that all the “curve crossings” correspond to retrieval ambiguities: they indicate that a
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pair of (14-GHz, 35-GHz) reflectivity factors can be explained by at least two rain rates (which

can differ by a factor of two or more – the two-dimensional manifolds could not be readily made

to illustrate this ambiguitiy quantitatively), associated to different DSD parameter values. This

implies that even in the absence of any observation noise, the dual-frequency retrieval problem

can be ambiguous, and manifestly more so in the case ofNMP than in the other cases, though

all the models have non-negligible ambiguities at low precipitation. Since these ambiguities are

intrinsic to the dual-frequency observations, one would need to consider additional measurements

to resolve them. The second point concerns the “blank” regions in the plots. These are most evident

in the least ambiguous casesNΓ0 andNΓ1, though they are not entirely absent in the other models.

Indeed, current technology cannot guarantee that the noisein the reflectivity measurements is less

than about 0.3 dB r.m.s. at best. Thus, one’s actual observations could quite easily fall outside

the region covered by our manifolds, i.e. it is quite likely that with any DSD model one will face

the situation where no rain rate can “explain” exactly a pairof (noisy) reflectivities. Therefore,

when attempting a retrieval, one must have a rigorous mechanism to assess the plausibility of

the various model pairs which are “close” to the measured pair. In summary, a dual-frequency

radar cannot entirely avoid the ambiguities with which we have been all too familiar in the case

of the TRMM radar, and the noise in the measurements (along with the unavoidable imperfection

of any DSD model) will make it essential to allow for multipleinexact “matches”. Both of these

concerns make it highly desirable to use a Bayesian framework to make unbiased estimates of the

precipitation underlying the measurements.

There is yet another problem which leads us to consider a sixth case. It is brought about by the

need to account for the cumulative attenuation at both frequencies as one estimates the rain rate

sequentially through the consecutive vertical range bins in the cloud. It is however easiest to
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describe this sixth case once the retrieval approach has been outlined, in the following section.

III. D UAL -FREQUENCY BAYESIAN RETRIEVAL

In order to keep the problems associated with the specific retrieval procedure separate from the

DSD ambiguities themselves, we applied the simplest Bayesian approach to the dual-frequency

profiling problem. Let us start by fixing the notation. For a given vertical column of precipitation,

call Z14(i) (respectivelyZ35(i)) the radar reflectivity factor measured from theith vertical range

bin at 14 (resp. 35) GHz, withi = 1 for the first bin at the top of the rainy cloud and increasing

downward. The equations that have to be solved for the rain-rate/DSD pair(R,N) at each range

bin i are

Z14(i) = z14(R,N) − 2A14(i −1) + noise14 (7)

Z35(i) = z35(R,N) − 2A35(i −1) + noise35 (8)

whereA14(i −1) (resp.A35(i −1) is the one-way 14 (resp. 35) GHz attenuation accumulated from

the top of the cloud until theith range bin, expressed in dB. To solve equations (7)-(8) for the

unknownsR andN, one would thus need to track the accumulated attenuationsA14 andA35. As-

suming that the noise terms “noise14” and “noise35” are 0-mean Gaussian with variancesσ2
14 and

σ2
35, the simplest Bayesian approach consists of two steps repeated recursively for the consecutive

range bins:

1. starting at the top of the cloud (i = 1), and settingA14(0) = A35(0) = 0, consider all realistic

rain ratesR and all DSD’sN allowed by the a-priori model, and calculate for each pair(R,N) its

mean-squared distancedi from the two independent measurements:

di(R,N) =

(

[Z14(i) + 2A14(i −1)] − z14(R,N)

σ14

)2

+

(

[Z35(i) + 2A35(i −1)] − z35(R,N)

σ35

)2

(9)
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The optimal unbiased estimate of the rain rate would then have to be given by

R̂(i) = ∑
N

Z

R pi(R,N)dR (10)

wherepi is the probability weightpi(R,N) = e−0.5di(R,N), normalized so that∑
R

pi = 1.

2. the corresponding accumulated attenuation up to and including the current range bin must then

be updated, using the similar formula

Af (i) = Af (i −1) + ∑
N

Z

δkf (R,N) pi(R,N)dR (11)

whereδ is the thickness of the range bin (in km), andf = 14 or 35 GHz.

This is the Bayesian retrieval approach which we used.

Before illustrating this method and comparing its retrievals with the five a-priori DSD cases, we

shall now describe a sixth case which we had to consider for completeness. It comes about because

equations (7)-(8) are not exactly correct. Indeed, rain is not the only source of attenuation of

microwaves in the atmosphere. While absorption by oxygen and water vapor is relatively small

and largely predictable, the attenuation due to cloud liquid water, especially at 35 GHz, is not

negligible. That is because the downward-looking radar will measure

Z(i) =

Z Z

(

Z iδ

(i−1)δ
z(r,θ,φ)e−

R top
r k(r ′,θ,φ)dr′dr

)

dθdφ (12)

and whilez in the right-hand-side is the radar reflectivity factor of the rain, the attenuation coef-

ficient k is the sumkrain + kcloud of the attenuations due to the precipitation and to the cloud(the

reflectivity of the cloud droplets is negligible because it is proportional to the sixth power of the

droplet diameter). At 35 GHz, ifM is the cloud liquid water content in g/m3, kcloud ' κM dB/km,

with κ = 0.84 m3 g−1 dB km−1 when all cloud droplets are 10µm in diameter (andκ increases to-

ward a value of 1.4 when all drops approach drizzle size). Thus, while the cloud is not sufficiently
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reflective to be detectable, it will cast a “shadow”, and thisshadow may differ in “clear air” and

within the rain. For example, a rather moderate two verticalkilometers of liquid cloud carrying

0.5 g/m3 of water will attenuate the 35 GHz signal by about 1 dB. This presents two problems.

First, the surface cross-section in “clear air” (i.e. wherethe reflectivities from the atmosphere do

not exceed the relatively high radar noise threshold), which is necessary to the proper estimation of

the integrated attenuation within precipitation, would beunder-estimated if no account is taken of

the attenuation due to any undetected cloud. This would result in an underestimate of the PIA, and

that is the main reason we chose not to use any a-priori information about the PIA in our retrieval

approach. Second, within the precipitation, at each vertical resolution bin one must estimate (and

“remove”) the attenuation in the left-hand-side of (12), and this cannot be done without biasing

the estimate if one does not know how to apportion the attenuation between precipitating and non-

precipitating liquid. We decided to test the effect of this “cloud-shadow” problem by considering

a sixth case, where the DSD is the TOGA-COARE database ofNC’s as in the fifth DSD model, but

where we systematically assume the existence of cloud liquid with liquid water contentM (g/m3)

equal to a nominal 20% of the precipitating liquid water in the given DSD sample and with an

attenuation coefficient of 0.84M dB/km. We shall refer to this DSD case asNCC. This case is

retained only to illustrate the cloud shadow effect. Clearly, more studies would need to be under-

taken to account for the variability of non-precipitating liquid water and its effect in the uncertainty

in the estimated rain rates.

To verify the accuracy of this dual-frequency Bayesian approach, it was tested on synthetic “data”

which was constructed as follows. Starting with the rain-rate profiles obtained from the single-

frequency TRMM radar algorithm over hurricane Bonnie on August 22, 1998, we super-imposed
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the DSD modelNΓ0 with various values of the parameterD′′, making sure to varyD′′ in all three

spatial dimensions. We then (re-)synthesized “measured” reflectivity profilesZ14 andZ35 at the

TRMM resolution but assuming sensitivity thresholds of 17 dBZ at 14 GHz and 15 dBZ at 35

GHz. We then applied the Bayesian approach described above to verify that the estimates do

match the original rain rates and the super-imposed values of D′′. The results are illustrated in fig-

ure 4, which shows estimated versus original rain rates, grouped into two “seasons”, one consisting

of profiles where the values ofD′′ in the super-imposed DSD were low (the “low-D season”) and

one where the value ofD′′ were large (the “high-D season”). For comparison, single-frequency (14

GHz) retrievals are also shown. The scatter in the dual-frequency Bayesian retrieval did increase

substantially below 1 mm/hr and above 12 mm/hr, but that was expected since at low rain rates

the second frequency simply adds no independent information and at high rain rates the significant

35-Ghz attenuation forces the 35-GHz echo below the assumedsensivity threshold. Thus one can

conclude that the Bayesian dual-frequency approach performs quite satisfactorily.

IV. THE CAMEX-4 RESULTS

We are now ready to apply the retrieval procedure outlined above to the data collected by JPL’s

airborne PR-2 radar (Sadowy et al, 2003) over tropical stormGabrielle and Hurricane Humberto

during the CAMEX-4 experiment. Figures 5 through 8 show the results of the retrievals. The

top two panels of figure 5 show the rather low radar reflectivities measured at nadir over Tropical

Storm Gabrielle on September 15, 2001. The system had just emerged off the Florida coast over

the Gulf Stream (around 30◦N 79◦W), but had not re-intensified. The remaining panels of figure

5 show the retrieved rain rates and mean drop diameters for each of the DSD modelsNMP, NΓ0,

NC andNCC. The top panels of figure 6 show the one-way integrated attenuations corresponding to
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each of the models considered, along with the surface-reference PIA estimated from two models:

a single average clear-air surface-cross-section reference value, and a fitted model as in Li et al,

2002. The remaining panels of figure 6 show the difference between the measured radar reflectivity

factors and those reconstructed from the results of the Bayesian retrieval, in each of the four cases

considered in this example. The top two panels of figure 7 showthe radar reflectivities measured

at nadir over Hurricane Humberto on September 24, 2001. The cyclone was embedded in a strong

southwesterly flow, and anticyclonic outflow from the convective region was quite obvious. The

warm core in the eye was weak, about 2 to 3 K warmer than the surrounding environment. There

was a large cirrus outflow extending several hundred nautical miles from the center near 37◦N

63◦W. The remaining panels in figure 7 show the retrieved rain rates and mean drop diameters for

each of the DSD modelsNMP, NΓ0, NΓ1, NΓ2, andNC. Finally, the top panels of figure 8 show the

various PIA’s, and the remaining panels of figure 8 show the errors in the case ofNMP, NΓ0 andNC.

The reflectivities measured in Gabrielle never exceeded about 40 dBZ, and at no time was the 35-

GHz echo attenuated below the sensitivity threshold of the radar. Figure 5 shows that the retrieved

vertical structure of the precipitation is quite similar inall four cases considered. The exponential

model MP produces unrealistically large rain rates in the three convective regions (near km 220,

km 270 and km 350), and very large mean hydrometeor sizes above the freezing level. Figure

6 confirms that the error in all four models is quite low, except within the melting layer in the

restricted-gamma caseNΓ0, where the model manifestly cannot explain the measured reflectivities

without errors of about 2 dB. In general, the errors are lowest in the case ofNC andNCC. A quan-

titative comparison of the estimates obtained using the various DSD models reveals significant

differences betweenNMP on one hand and the three other models on the other hand. Indeed, the
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average vertical rain rate profile estimated using any of theDSD models except the exponential is

between 2 and 3 mm/hr (with the exponential DSD model, the average rain rate increases rapidly

from about 1 mm/hr at 4km to 11 mm/hr near the surface). Similarly, except in the exponential

case, the average vertical mean-drop-size profile increases from the top to a value near 1.4 mm in

the melting layer, then remains near 1.2 mm from 4 km down to the surface (with the exponential

DSD model, the average mean-drop-size reaches 1.8 mm in the melting layer, drops to about 0.9

mm at 4 km altitude, and remains fairly constant down to the surface). As to the cloud-attenuation

effect, the rain-rate estimates obtained using the rain+cloud modelNCC are very close to those

of the rain-only modelNC aloft, though as the altitude decreases the rain rates estimated using

the rain+cloud model increase steadily with respect to those of the rain-only model, the increase

reaching about 50% near the surface. However, remarkably, the mean drop size estimated by the

rain+cloud and the rain-only models are almost identical.

In the case of Humberto, figure 7 clearly shows several cells with significant convection, and in

fact the 35-GHz echo disappears at several locations along the track, most notably near km 110 and

between km 170 and km 210. The vertical structure of the retrieved rain rates and mean drop sizes

from all the models except the exponential are quite similar. The latter was manifestly ill-suited to

explain the measurements in this case and figure 8 confirms that its errors are not negligible. This

figure also shows that the modelsNΓ0, NΓ1 andNΓ2 (as well asNMP) fail whenever the 35-GHz

is attenuated into the noise, but the raw-samples modelNC produces remarkably low errors even

when the 35-GHz channel is attenuated into noise. A quantitative comparison of the differences

in the estimates due to the different DSD models confirms thatthe exponential model is the least

consistent with the measurements, the database model is themost consistent, and the restricted
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gamma models fall in between. Specifically, the average vertical rain rate profile in the case ofNΓ2

andNC increases from about 4 mm/hr at 4 km to about 10.5 mm/hr near the surface; in the case of

NΓ0, it increases from about 5 mm/hr at 4 km to a rather large 40 mm/hr near the surface; and in

the case ofNMP andNΓ1, it increases from about 6 mm/hr at 4 km to a rather unrealistic 90 mm/hr

near the surface. As to the average mean drop size, the estimates obtained usingNΓ0 andNC are

very close, remaining near 1.5 mm from 3.5 km down to the surface; the mean drop size in the

case ofNΓ2 remains near 1.7 mm from the melting layer down to the surface; and the mean drop

size in the case ofNΓ1 is systematically the lowest, increasing from 1.2 mm just below the melting

layer to 1.5 mm near the surface.

Most interesting, all the DSD models (except the exponential) produce rain-rate and mean-drop-

size estimates which are very significantly correlated. This is illustrated in figures 9 and 10. In

the three restricted-gamma models, the joint behavior of the mean-drop-size and the rain-rate is

approximately bimodal, clustering around the “upper” and “lower” log-linearD∗–R relations given

in table 1. In the database case, the estimates cluster around the piecewise log-linear relation

D∗ = 0.95R0.2 if R< 7.4 (13)

= 1.22R0.075 if R> 7.4 (14)

The particularly striking fact is that for heavier rain (Rgreater than about 10 mm/hr), the estimates

overwhelmingly cluster around the “low-D∗” correlation curves, in all four cases. This would im-

ply that the mean drop size at high rain rates is smaller than one would anticipate from correlation

models derived from more moderate precipitation. Similarly, for lighter rain, while there is no pro-

nounced trend in the restricted-gamma models, the estimates produced by the COARE-database

DSD model do cluster around a log(D∗)–log(R) curve with a steeper slope than the one obtained
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at higher rain rates, implying that the mean drop size decreases more rapidly with decreasing rain

rate when the latter falls below about 4.5 mm/hr. This supports the likelihood that the mean drop

size at lighter precipitation is indeed smaller than one might anticipate from a correlation model

derived from more intense precipitation.

V. CONCLUSIONS

The main conclusion of this analysis is that several quite different DSD models do indeed produce

plausible dual-frequency precipitation estimates, at least over tropical systems like those observed

during CAMEX-4. The general shape of the vertical variationof the retrieved rain rates and mean

drop sizes will be similar among the different models, but the precipitation amounts and the ac-

tual profiles of mean drop diameter differ from model to model, as do the resulting correlation

patterns between rain rate and mean drop diameter. The most important implication is that the

decision about which drop size distributions should be considered a-priori plausible does have a

determining effect on the eventual retrievals. It is therefore very important to justify such a-priori

assumptions with detailed DSD measurements at radar-sizedresolutions.
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Figure captions:

Figure 1:Zm-derived Path-Integrated-Attenuation versus surface-reference estimates from the TRMM

data, showing poor correlation at moderate and low precipitation (convective cases are shown in

red, stratiform in black).

Figure 2: Actual (Mie) vs small-size-approximation (Rayleigh) microwave signatures of rain

drops.

Figure 3: Reflectivity “manifolds” (z14− z35) vs z14 for the DSD’sNMP (top), NΓ0 (middle left),

NΓ1 (middle right),NΓ2 (lower left), andNC (lower right), showing the flow lines for the rain rateR

in the first two cases (each curve corresponds to a fixed value of the free parameter of the respective

DSD, namelyN0 in the case ofNMP, andD′′ = D∗R−0.155 in the case ofNΓ0), and showing one

point for typical values of (R, µ, Λ) considered in the case ofNΓ1 andNΓ2, and showing all the

DSD sampled during the TOGA-COARE campaign in the case ofNC.

Figure 4: Estimated versus original rain rates, with small-drop cases indicated with an×, the

large-drop cases indicated with a◦. The left panel shows the single-frequency retrievals, which

mis-interpret the changing DSD, resulting in biased estimates. The right panel shows the dual-

frequency Bayesian estimates.

Figure 5: Tropical Storm Gabrielle – measured radar reflectivities in dB (top panels), and retrieved

rain ratesR in mm/hr (left panels) and mass-weighted mean drop diameters D∗ in mm (right pan-

els).

Figure 6: Tropical Storm Gabrielle – Path-Integrated Attenuations in dB (at 14 GHz in the top

left panel, 35 GHz in the top right panel; the measured attenuations according to the two surface-
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reference methods are shown in dashed lines, while the estimates from three of the DSD models

are shown in black in the case ofNMP, blue in the case ofNΓ0, and red in the case ofNC) as well

as the reflectivity errorsZ - Zreconstructedin dB (at 14 GHz in the left panels, 35 GHz in the right

panels).

Figure 7: Hurricane Humberto – measured radar reflectivities in dB (top panels), and retrieved rain

ratesR in mm/hr (left panels) and mass-weighted mean drop diametersD∗ in mm (right panels).

Figure 8: Hurricane Humberto – Path-Integrated Attenuations in dB (at 14 GHz in the top left

panel, 35 GHz in the top right panel, as in figure 6) and reflectivity errorsZ - Zreconstructedin dB (at

14 GHz in the left panels, 35 GHz in the right panels).

Figure 9: Correlations betweenR andD∗ in the case of Gabrielle.

Figure 10: Correlations betweenRandD∗ in the case of Humberto.
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DSD model high-D∗ relation low-D∗ relation

Γ0 D∗ = 1.42R0.15 D∗ = R0.044

Γ1 D∗ = 1.1R0.17 D∗ = 0.91R0.06

Γ2 D∗ = 1.45R0.19 D∗ = 1.31R0.066

TABLE I

RETRIEVED D∗–R RELATIONS WITH R IN MM /HR AND D∗ IN MM .
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