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Abstract

The threat of flooding from landfalling tropical cyclonesaisunction of the local variation in rain

rate and rain accumulation. To date, these have been idféoen single-frequency radar reflec-
tivity measurements. However, the Tropical Rainfall MeasypMission experience has confirmed
that one of the main difficulties in retrieving rain profilesing a single-frequency radar is the
unknown raindrop size distribution (DSD). A dual-frequgmadar such as the one planned for
the up-coming Global Precipitation Measurement (GPM) catellite is expected to help sort out
at least part of this DSD-induced ambiguity. However, tlgnature of precipitation at 14 GHz

does not differ greatly from its signature at 35 GHz (the GR¥dar frequencies). In order to de-
termine the extent of the vertical variability of the DSD nopical systems and to quantify the
effectiveness of a dual-frequency radar in resolving thibiguity, we consider several different
models of DSD shape, and use them to estimate the rain-rdteaan-diameter profiles from the
measurements made by JPL’s airborne PR-2 radar over mesdcaabrielle and Humberto during
the CAMEX-4 experiment in September 2001. It turns out that\tertical structures of the rain

profiles retrieved from the same measurements under ditf@8D assumptions are similar, but

the profiles themselves are quantitatively significantffedent.



. INTRODUCTION

Once a tropical cyclone makes landfall, one of its main desire threats is the flooding it often
causes. This threat of flooding is a function of the rain ratevall as the total surface rain accu-
mulation. The precipitation can be quite drastically affelcby local orographic forcing as well
as interactions with any mid-latitude frontal boundariesipper-level troughs. That is why it is
very desirable to monitor the rainfall within tropical cgales at fine temporal and spatial scales.
While this can be achieved using weather radar, the measmtavhsurface rainfall with radar is
not without problems, chief among them being the dependehtte non-linear relation between
the measured radar reflectivitiégsand the underlying rain rate on the sizes of the rain drops.
The latter can vary significantly within a tropical cyclone. convective areas, large hydromete-
ors tend to precipitate out locally, while smaller ones témdbe carried aloft to be precipitated
out in stratiform areas. Since the reflectivity of a rain di®poughly proportional to the square
of its mass, small errors in the a-priori assumption aboetdiop sizes in any given column of
rain can easily produce large errors in the inferred raia. rathis problem has been dealt with
in two ways. A concerted effort has been made to describe rihye size distribution (DSD) in
various rain regimes using in-situ measurements obtaigegtdund-based disdrometers as well
as airborne optical probes. While such data can yield staislescriptions about rain drop size
variability, they are limited by the fact that the instrunteimvolved can only sample a minuscule
volume of air relative to the large volumes that are probe@\sn the highest resolution radars.
It is therefore not at all clear how representative the &iati obtained from in-situ data are of the
rain in any specific precipitating column. An alternate @uhare to quantify these statistics and to
make them more specifically relevant to any particular arlainva tropical cyclone is to design

radars which can simultaneously measure both the rain raté¢hee underlying mean drop size.
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This approach requires a dual-frequency radar, with thenagson that the reflectivities measured
at two different frequencies depend in an invertible waytenunderlying rain rate and mean drop
size. Indeed, the original proposal for the precipitatiadar designed for the Tropical Rainfall
Measuring Mission (TRMM) specified a Ku-band as well as a ldaebchannel. The latter was
eventually dropped due to budget constraints, but the filegltency design is being implemented

for the up-coming Global Precipitation Mission.

The rain-profiling algorithm development and validatiofoef undertaken for TRMM has con-
firmed that one of the main difficulties surrounding the esfail of rain rate profiles from space-
borne radar reflectivity measurements is the unknown DSdiedd, if one starts with the assump-
tion that the DSD is always an exponential (or, at worst, argajrdistribution, whose dependence
on the rain rate is known a priori, one can then derive poaerrelationsZ = aR’ andk = aRP
which very adequately relate the 14-GHz radar reflectiaigtdr Z and the 14-GHz attenuation
coefficientk to the rain rateR. It follows (see e.g. Haddad et al, 1995) that the one-wal-pat
integrated attenuatiolA, integrated over a vertical rain column, must be relatedéolt4-GHz

measured reflectivitied, in that column by

b/
PIA = (1 - O.2Iog(10)a% / (Zm/a)B/b) )

Figure 1 is a plot of th&I1A values obtained from the TRMM radar measurements over tbaoc
during several orbits by comparing the rainy surface retith the average surface return from the
nearby clear-air regions. This “surface-reference” Pl&hswn on the horizontal axis, while the
vertical axis represents the right-hand-side of (1) calea with two different DSD assumptions
(corresponding to a few different sets of cons@rit, a andf3). The left panel shows the result of
using the a-priori values of the parametard, a and in the TRMM radar algorithm (Iguchi et

al, 2000); the right panel shows the result of using thosamaters in the multiple-DSD TRMM
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combined radar/radiometer algorithm (Haddad et al, 19@F&)h produce the largest attenuation.
If (1) were verified exactly, one would expect much less scdktian is evident in the plots. Indeed,
for one-way attenuations below 1.5 dB, there does not sedia &my correlation between the two
sides of (1), though there is a clear tendency forZkealculated values to be much smaller than
the surface-referenced ones. This apparent failure oftequél) could be caused in part by the
change in the surface backscattering cross-section dine teariation of the wind from the clear
air regions to the rainy area. But a systematic increaseaeédse of the backscattering within the
precipitation would result in a bias of the estimates. Thot flaat such a bias is not evident in the
figure leads to the conclusion that whatever systematicggnanthe wind between the clear and
rainy areas is not sufficient to explain the large mismatdhliis at moderate and low precipita-
tion. Indeed, this discrepancy constitutes compellingence that the DSD parameters vary very

significantly over a rain column.

In the case of TRMM, this DSD problem has been dealt with iniwegys. In the radar algorithm,

(1) is used to adjust the ratmf3/b and thus reduce the ambiguity, at least in the case of heavier
precipitation. In the Bayesian framework of the TRMM conddnradar/radiometer algorithm,
(1) is used to weight the candidate a-priori DSD's in favotled better-matching ones, and the
observed radiances are also used to further constrain thiglayossibilities for the DSD. The
dual-frequency radar which the Global Precipitation Measwent (GPM) mission’s core satellite
will carry should prove a much more effective tool in sortog at least part of this DSD-induced
ambiguity. Indeed, with two radar reflectivity profiles, omeuld expect to be able to retrieve not
just a single rain rate profile, but in addition at least onestforder” DSD profile, e.g. a profile of

the (mass-weighted) mean drop diamddér Unfortunately, this expectation may turn out to be
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difficult to fulfill, because the reflectivity profiles at thed radar frequencies are far from indepen-
dent. After all, lighter rain is made up mostly of small drops figure 2 shows, the backscattering
cross-section of small drops is not significantly differahfi4 and 35 GHz. One would therefore
not expect large differences in the associated radar neftgdactors. While the difference in the
extinction cross-section appears more readily explatédal small drops, its actual magnitude is
unfortunately so small that the resulting attenuation isgignificant for light precipitation. At
the other extreme, while the attenuation will be appreeight both frequencies) for heavy rain,
it is in fact likely to be so appreciable as to drive the bactered 35-GHz signal itself below
the sensitivity threshold of that channel. Thus, the twodiencies are not very different at low
rain rates, and they will in effect reduce to a single freaquyestt high rain rates, leaving a some-
what disappointing range over which the two frequencieshzarealistically expected to resolve
the DSD-induced ambiguity problem. That is why it is at leastimportant for GPM as it was
for TRMM to develop an optimal approach to extract from aé tBPM core satellite’s measure-
ments profiles of the best unbiased estimates of the meamhg oéin rateR and mass-weighted
mean diameteD*. The purpose of this paper is to quantify the effect of ddferplausible a-priori
assumptions about the possible shapes of the DSD on thevestrprecipitation profiles using

tropical cyclone data from CAMEX-4.

The aim of this work is not to propose a specific retrieval rmdtilogy. Many dual-frequency

rain-profiling algorithms have been proposed to date, istamwith those developed by Eccles
and Muller (1971), Fujita (1983), Meneghini and Nakamur@9(@), and Marzoug and Amayenc
(1994). These approaches start by making some simplifygagraptions to reduce the DSD descr-

pition to an analytic form using two parameters, and prodequtescribe a procedure to retrieve
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the latter given a pair of reflectivity profiles at two frequess. Our goal is to assess the effect
of a-priori DSD assumptions, including the possibility ohsidering DSD'’s that are not given by
any analytic form but rather coming directly from extensbadlections of in-situ measurements.
That is why we tried to avoid any specific deterministic matal algorithms, and relied instead on
obtaining Bayesian estimates of the (conditional) meam raie and mass-weighted mean drop
diameter, given the measured reflectivities and given egmtioa model of the “allowed” DSD
shapes. The models considered are listed in section 2, arBatesian estimation is discussed in

section 3. The results for the CAMEX-4 data are describeéaticn 4.

1. DIFFERENTDSD MODELS

We shall consider five well-documented liquid DSD models.diszussion of DSD’s can be com-

plete without considering Marshall and Palmer’s exporafvrm (Marshall and Palmer, 1948)
Nvp(D) = Noe P 2)

in which, if we assume a nominal terminal fall velocity aB58(1 — e %5%) m/s for drops of

diameteD mm, the parameteid; and/A must be consistent witR, i.e. must satisfy

1 1

R=011( -~
0 (/\4 (A + 0.53)%

) No mm/hr (3)

with Ng in mm~1 m=3. Thus, in addition td&, the exponentiadlyp has a single free parameter. As
long as equation (3) is enforced, whether one chooses ttifigléns parameter ably or A makes
no difference whatsoever, and we shall choaseith the additional constraint that the ratig/,
which is equal to the mass-weighted mean drop diameterxeete 3 mm. The second, third and

fourth DSD models which we consider are special cases ofdhetpa DSD

Nr(D) = NoD"e™\P. (4)
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This distribution effectively depends on two parametersddition toR. There are several ways of
constraining one of these parameters to end up with only twkmowns which can be solved for
using the two measured radar reflectivity factors. One thatdnoved consistent with disdrometer
and airborne 2D-probe (small) sample statistics congists-expressingt andA in terms of the
mass-weighted mean drop diamdberand the dimensionless relative mass-weighted r.m.s. diam-
eter deviatiors®, and enforcing on the pa{D*,s") the rather restrictive joint behavior quantified
by the sample statistics observed during the TOGA-COAREpzagm (Lukas et al, 1995) and
during the 1992-1993 Darwin field measurements (Haddad &98i7b). Roughly, these restric-
tions amount to requiring thd*R~°%1%> have a mean of about 1.1 (wifhin mm/hr andD* in
mm) and a standard deviation of about 0.3, wisilB*~%18°R-0011 \which has a mean of about
0.4 and a tiny standard deviation smaller than 0.05, is fixdldaso thaD” = D*R%1%% js the
independent DSD parameters in this case. We shall refeetresulting “restricted” gamma DSD
model asNr,. This is the second DSD which we shall consider. It is the ase=lun the TRMM
combined radar/radiometer algorithm. The third and fol@D models are similar restrictions of
the gamma model, obtained from (4) by imposing a deterninistation betweemy andp. We

chose the relation (Ulbrich and Atlas, 1998)

No = 6734 et mm1Hm3 (5)
for the third modeNr,, and the relation (Ulbrich, 1983)

No = 1500 e*8# mm—1-Hm=3 (6)

for the fourth modeNr,. Finally, we also consider a model which does not depend grtkased
analytic form for the distribution functioM. After all, there is an enormous wealth of sampled

DSD’s measured from various probes, and there is no reasdi nge a large subgroup of such
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samples as an a-priori database in lieu of a model. Indeedufdifth DSD “model”’N¢, we chose
the TOGA-COARE database of DSD samples collected by the NEARPMS probes mounted
on the NCAR Electra aircraft over the warm pool of the wesegmatorial Pacific between Novem-
ber 1992 and February 1993. A principal component analfde&afher and Haddad, 2002), had
reduced this dataset and produced a more efficient way totbed#ata. But the resulting savings
in computer resources (memory and processing) are noffisgmi for the current study and we

used the original database of DSD samples itself.

The next step is to calculate the Mie extinction and backtsgag efficiencies as a function of
drop diameter. Once this is done, one can associate to éaetate/DSD paiR N) in any one of
our five models the corresponding radar reflectivity facmgsR, N) andzas(R,N) (in mm® m—3),
and the corresponding attenuation coefficigaigR, N) andkss(R, N) (in dB/km). Figure 3 shows
the resulting “reflectivity manifolds” (to borrow a term dda the passive radiometer community
— see e.g. Smith and Mugnai, 1988) for each of our DSD modalshd case oNwvp, Nr,, Nr,
andNr,, these manifolds were obtained by choosing a few represantalues for the free DSD
parameterA in the case oNyp, Nr, andNr,, D” in the case oNr,), and lettingR vary from 0.2
to 200 mm/hr. In the case &, the manifold is computed directly from the DSD samples & th
database. In all cases, the value of the differesgéR N) — z35(R,N) is plotted versugia(R,N).
The first observation is that, for all five DSD models, whenteGHz reflectivities are small, the
rain rate curves are almost horizontal, confirming our pmesiobservation that for lighter precipi-

tation there is no significant difference between the twquencies.

There are two additional facts illustrated by the figure \Whace crucial to the retrieval problem.

The first is that all the “curve crossings” correspond toiegtrl ambiguities: they indicate that a
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pair of (14-GHz, 35-GHz) reflectivity factors can be expkdrby at least two rain rates (which
can differ by a factor of two or more — the two-dimensional if@ds could not be readily made
to illustrate this ambiguitiy quantitatively), associt® different DSD parameter values. This
implies that even in the absence of any observation noiseddal-frequency retrieval problem
can be ambiguous, and manifestly more so in the caféyefthan in the other cases, though
all the models have non-negligible ambiguities at low grgation. Since these ambiguities are
intrinsic to the dual-frequency observations, one wouleld® consider additional measurements
to resolve them. The second point concerns the “blank” regjiothe plots. These are most evident
in the least ambiguous cass, andNr,, though they are not entirely absent in the other models.
Indeed, current technology cannot guarantee that the otke reflectivity measurements is less
than about 0.3 dB r.m.s. at best. Thus, one’s actual obsengatould quite easily fall outside
the region covered by our manifolds, i.e. it is quite likeiat with any DSD model one will face
the situation where no rain rate can “explain” exactly a jditnoisy) reflectivities. Therefore,
when attempting a retrieval, one must have a rigorous mestmato assess the plausibility of
the various model pairs which are “close” to the measured pgaisummary, a dual-frequency
radar cannot entirely avoid the ambiguities with which weehbeen all too familiar in the case
of the TRMM radar, and the noise in the measurements (alotigthe unavoidable imperfection
of any DSD model) will make it essential to allow for multipleexact “matches”. Both of these
concerns make it highly desirable to use a Bayesian franteteanake unbiased estimates of the

precipitation underlying the measurements.

There is yet another problem which leads us to consider & sege. It is brought about by the
need to account for the cumulative attenuation at both #Rrqgies as one estimates the rain rate

sequentially through the consecutive vertical range hinthe cloud. It is however easiest to
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describe this sixth case once the retrieval approach hasdugkned, in the following section.

[11. DUAL-FREQUENCY BAYESIAN RETRIEVAL

In order to keep the problems associated with the specifievat procedure separate from the
DSD ambiguities themselves, we applied the simplest Bayespproach to the dual-frequency
profiling problem. Let us start by fixing the notation. For aegi vertical column of precipitation,
call Z14(i) (respectivelyZss(i)) the radar reflectivity factor measured from tffevertical range
bin at 14 (resp. 35) GHz, with= 1 for the first bin at the top of the rainy cloud and increasing
downward. The equations that have to be solved for the e@g/BDSD painR N) at each range

bini are

214(i) = 214(R,N) — 2A14(i — 1) + noisga (7)

Zg5(i) = 235(R,N) - 2A35(i - 1) + noisgs (8)

whereAg4(i — 1) (resp.Ass(i — 1) is the one-way 14 (resp. 35) GHz attenuation accumulatexd fro
the top of the cloud until thé&" range bin, expressed in dB. To solve equations (7)-(8) fer th
unknownsR andN, one would thus need to track the accumulated attenuafignandAzs. As-
suming that the noise terms “noigeéand “noisgs” are 0-mean Gaussian with varian(m% and
0%5, the simplest Bayesian approach consists of two stepstezpescursively for the consecutive

range bins:

1. starting at the top of the cloud-£ 1), and setting\14(0) = Ass(0) = 0, consider all realistic
rain ratesR and all DSD’sN allowed by the a-priori model, and calculate for each pRiN) its
mean-squared distandefrom the two independent measurements:

[Z14(i) + 2A14(i — 1)] — 214(R, N))2 N <[235(i) + 2Ags(i — 1)) — z35(R, N))2
014 035

di(RN) = <
(9)
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The optimal unbiased estimate of the rain rate would thee tabe given by

R(i) = %/Rp(R,N)dR (10)

wherep; is the probability weighpi (R N) = e~ %5¢(RN) ‘normalized so thay [ pi = 1.
2. the corresponding accumulated attenuation up to anddimgj the current range bin must then

be updated, using the similar formula

Ar(i) =Af<i—1>+;/6kf<R,N> pi(RN)dR (11)
whered is the thickness of the range bin (in km), ahe: 14 or 35 GHz.

This is the Bayesian retrieval approach which we used.

Before illustrating this method and comparing its retrlswaith the five a-priori DSD cases, we
shall now describe a sixth case which we had to consider fopteteness. It comes about because
equations (7)-(8) are not exactly correct. Indeed, rainasthe only source of attenuation of
microwaves in the atmosphere. While absorption by oxygehveater vapor is relatively small
and largely predictable, the attenuation due to cloud diquater, especially at 35 GHz, is not

negligible. That is because the downward-looking radarméasure

|6 gie] / /
Z(i) = / / ( /( )az(r,e,cp)e—lrt PK(r 797“’)drdr) dede (12)
i—1

and whilez in the right-hand-side is the radar reflectivity factor oé tfain, the attenuation coef-
ficientk is the sumkain + Keioug Of the attenuations due to the precipitation and to the c{thel
reflectivity of the cloud droplets is negligible becausesiproportional to the sixth power of the
droplet diameter). At 35 GHz, if1 is the cloud liquid water content in gArkeioud ~ KM dB/km,
with K = 0.84 m? g~ dB km~1 when all cloud droplets are 48n in diameter (and increases to-

ward a value of 1.4 when all drops approach drizzle size)sTivhile the cloud is not sufficiently
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reflective to be detectable, it will cast a “shadow”, and 8hadow may differ in “clear air” and
within the rain. For example, a rather moderate two vertkdaimeters of liquid cloud carrying
0.5 g/n? of water will attenuate the 35 GHz signal by about 1 dB. Thisspnts two problems.
First, the surface cross-section in “clear air” (i.e. whire reflectivities from the atmosphere do
not exceed the relatively high radar noise threshold), wls@ecessary to the proper estimation of
the integrated attenuation within precipitation, wouldumgler-estimated if no account is taken of
the attenuation due to any undetected cloud. This wouldtnesan underestimate of the PIA, and
that is the main reason we chose not to use any a-priori irdgtbom about the PIA in our retrieval
approach. Second, within the precipitation, at each \artesolution bin one must estimate (and
“remove”) the attenuation in the left-hand-side of (12)dahis cannot be done without biasing
the estimate if one does not know how to apportion the atteubetween precipitating and non-
precipitating liquid. We decided to test the effect of thitoud-shadow” problem by considering
a sixth case, where the DSD is the TOGA-COARE databadk 'sfas in the fifth DSD model, but
where we systematically assume the existence of clouddigith liquid water contenM (g/m3)
equal to a nominal 20% of the precipitating liquid water i tiiven DSD sample and with an
attenuation coefficient of 0.8{1 dB/km. We shall refer to this DSD case Blsc. This case is
retained only to illustrate the cloud shadow effect. Clgarlore studies would need to be under-
taken to account for the variability of non-precipitatinguid water and its effect in the uncertainty

in the estimated rain rates.

To verify the accuracy of this dual-frequency Bayesian apph, it was tested on synthetic “data”
which was constructed as follows. Starting with the raite-arofiles obtained from the single-

frequency TRMM radar algorithm over hurricane Bonnie on Asig22, 1998, we super-imposed
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the DSD modeNr, with various values of the parametgf, making sure to varp” in all three
spatial dimensions. We then (re-)synthesized “measureitBativity profilesZi4 andZszs at the
TRMM resolution but assuming sensitivity thresholds of BZdat 14 GHz and 15 dBZ at 35
GHz. We then applied the Bayesian approach described aboverify that the estimates do
match the original rain rates and the super-imposed valuBs.oT he results are illustrated in fig-
ure 4, which shows estimated versus original rain ratesjggd into two “seasons”, one consisting
of profiles where the values &’ in the super-imposed DSD were low (the “low-D season”) and
one where the value @" were large (the “high-D season”). For comparison, singéepfiency (14
GHz) retrievals are also shown. The scatter in the dualdfeagy Bayesian retrieval did increase
substantially below 1 mm/hr and above 12 mm/hr, but that waee&ed since at low rain rates
the second frequency simply adds no independent informatid at high rain rates the significant
35-Ghz attenuation forces the 35-GHz echo below the asssereivity threshold. Thus one can

conclude that the Bayesian dual-frequency approach pesfquite satisfactorily.

IV. THE CAMEX-4 RESULTS

We are now ready to apply the retrieval procedure outlineavato the data collected by JPL's
airborne PR-2 radar (Sadowy et al, 2003) over tropical st@abrielle and Hurricane Humberto
during the CAMEX-4 experiment. Figures 5 through 8 show th&ults of the retrievals. The
top two panels of figure 5 show the rather low radar refleagdigimeasured at nadir over Tropical
Storm Gabrielle on September 15, 2001. The system had jusigesh off the Florida coast over
the Gulf Stream (around 38 79°W), but had not re-intensified. The remaining panels of figure
5 show the retrieved rain rates and mean drop diameters ébr @ahe DSD model®vp, Nr,,

Nc andNcc. The top panels of figure 6 show the one-way integrated adteons corresponding to
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each of the models considered, along with the surfaceaméer PIA estimated from two models:
a single average clear-air surface-cross-section referealue, and a fitted model as in Li et al,
2002. The remaining panels of figure 6 show the differenceééen the measured radar reflectivity
factors and those reconstructed from the results of the Bayeetrieval, in each of the four cases
considered in this example. The top two panels of figure 7 shewadar reflectivities measured
at nadir over Hurricane Humberto on September 24, 2001. Jtlerre was embedded in a strong
southwesterly flow, and anticyclonic outflow from the cortixexregion was quite obvious. The
warm core in the eye was weak, about 2 to 3 K warmer than thewuding environment. There
was a large cirrus outflow extending several hundred ndutidas from the center near 3X
63°W. The remaining panels in figure 7 show the retrieved raiesrand mean drop diameters for
each of the DSD modelSyip, Nr,, Nr,, Nr,, andNc. Finally, the top panels of figure 8 show the

various PIAs, and the remaining panels of figure 8 show thergiin the case dflyp, N, andNc.

The reflectivities measured in Gabrielle never exceededtatibdBZ, and at no time was the 35-
GHz echo attenuated below the sensitivity threshold ofdldar. Figure 5 shows that the retrieved
vertical structure of the precipitation is quite similarath four cases considered. The exponential
model MP produces unrealistically large rain rates in thredglconvective regions (near km 220,
km 270 and km 350), and very large mean hydrometeor sizeseahevfreezing level. Figure
6 confirms that the error in all four models is quite low, excefthin the melting layer in the
restricted-gamma cadé-,, where the model manifestly cannot explain the measureettafities
without errors of about 2 dB. In general, the errors are Iduwethe case oNc andNcc. A quan-
titative comparison of the estimates obtained using theuarDSD models reveals significant

differences betweeNyp on one hand and the three other models on the other hand.dlnithee
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average vertical rain rate profile estimated using any ofX8® models except the exponential is
between 2 and 3 mm/hr (with the exponential DSD model, thea@eerain rate increases rapidly
from about 1 mm/hr at 4km to 11 mm/hr near the surface). Sigjlaxcept in the exponential
case, the average vertical mean-drop-size profile incsdasm the top to a value near 1.4 mm in
the melting layer, then remains near 1.2 mm from 4 km downécstirface (with the exponential
DSD model, the average mean-drop-size reaches 1.8 mm indhimgnlayer, drops to about 0.9
mm at 4 km altitude, and remains fairly constant down to thiéase). As to the cloud-attenuation
effect, the rain-rate estimates obtained using the raouecimodelNcc are very close to those
of the rain-only modeNc aloft, though as the altitude decreases the rain rates astilnusing
the rain+cloud model increase steadily with respect todhaighe rain-only model, the increase
reaching about 50% near the surface. However, remarkdigdynean drop size estimated by the

rain+cloud and the rain-only models are almost identical.

In the case of Humberto, figure 7 clearly shows several catls significant convection, and in
fact the 35-GHz echo disappears at several locations aheigack, most notably near km 110 and
between km 170 and km 210. The vertical structure of theenetd rain rates and mean drop sizes
from all the models except the exponential are quite similae latter was manifestly ill-suited to
explain the measurements in this case and figure 8 confirrhggtearors are not negligible. This
figure also shows that the modéls,, Nr, andNr, (as well asNyp) fail whenever the 35-GHz
is attenuated into the noise, but the raw-samples midggiroduces remarkably low errors even
when the 35-GHz channel is attenuated into noise. A quaémgtaomparison of the differences
in the estimates due to the different DSD models confirmsttteaexponential model is the least

consistent with the measurements, the database model lmdbeconsistent, and the restricted
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gamma models fall in between. Specifically, the averagecatrain rate profile in the case b,
andNc increases from about 4 mm/hr at 4 km to about 10.5 mm/hr nessutface; in the case of
Nr,, it increases from about 5 mm/hr at 4 km to a rather large 40hmnear the surface; and in
the case oNyvp andNr,, itincreases from about 6 mm/hr at 4 km to a rather unrea/@dimm/hr
near the surface. As to the average mean drop size, the esdimiatained usinij-, andNc are
very close, remaining near 1.5 mm from 3.5 km down to the serféhe mean drop size in the
case ofNr, remains near 1.7 mm from the melting layer down to the surfaed the mean drop
size in the case dflr, is systematically the lowest, increasing from 1.2 mm jusblwehe melting

layer to 1.5 mm near the surface.

Most interesting, all the DSD models (except the expongrgraduce rain-rate and mean-drop-
size estimates which are very significantly correlated.sTiillustrated in figures 9 and 10. In

the three restricted-gamma models, the joint behavior @ntiean-drop-size and the rain-rate is
approximately bimodal, clustering around the “upper” alwdver” log-linearD*—R relations given

in table 1. In the database case, the estimates clustercatbepiecewise log-linear relation

D* = 0.95R°? if R< 7.4 (13)

= 1.22R9® if R>74 (14)

The particularly striking fact is that for heavier raiR greater than about 10 mm/hr), the estimates
overwhelmingly cluster around the “lo@*” correlation curves, in all four cases. This would im-
ply that the mean drop size at high rain rates is smaller tim@naould anticipate from correlation
models derived from more moderate precipitation. Simylddr lighter rain, while there is no pro-
nounced trend in the restricted-gamma models, the estnpateluced by the COARE-database

DSD model do cluster around a l&()—log(R) curve with a steeper slope than the one obtained
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at higher rain rates, implying that the mean drop size deeemore rapidly with decreasing rain
rate when the latter falls below about 4.5 mm/hr. This sufgpihie likelihood that the mean drop
size at lighter precipitation is indeed smaller than onehmnanticipate from a correlation model

derived from more intense precipitation.

V. CONCLUSIONS

The main conclusion of this analysis is that several quiferdint DSD models do indeed produce
plausible dual-frequency precipitation estimates, atleger tropical systems like those observed
during CAMEX-4. The general shape of the vertical variabbtthe retrieved rain rates and mean
drop sizes will be similar among the different models, bt pinecipitation amounts and the ac-
tual profiles of mean drop diameter differ from model to mo@eal do the resulting correlation
patterns between rain rate and mean drop diameter. The mpsttant implication is that the
decision about which drop size distributions should be ictaned a-priori plausible does have a
determining effect on the eventual retrievals. It is therefvery important to justify such a-priori

assumptions with detailed DSD measurements at radar-ssetltions.
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Figure captions:

Figure 1:Zn-derived Path-Integrated-Attenuation versus surfatereace estimates from the TRMM
data, showing poor correlation at moderate and low pretipit (convective cases are shown in

red, stratiform in black).

Figure 2: Actual (Mie) vs small-size-approximation (Ragl® microwave signatures of rain

drops.

Figure 3: Reflectivity “manifolds” %14 — z3s) vs z14 for the DSD’sNvp (top), Nr, (middle left),
Nr, (middle right),Nr, (lower left), andN\c (lower right), showing the flow lines for the rain reRe

in the first two cases (each curve corresponds to a fixed vathe éree parameter of the respective
DSD, namelyNy in the case ofNyp, andD” = D*R-%155 in the case oNr,), and showing one
point for typical values ofR, 4, A) considered in the case b, andNr,, and showing all the

DSD sampled during the TOGA-COARE campaign in the cadé-of

Figure 4: Estimated versus original rain rates, with srdadlp cases indicated with ar, the
large-drop cases indicated withoa The left panel shows the single-frequency retrievalsctvhi
mis-interpret the changing DSD, resulting in biased edtsiaThe right panel shows the dual-

frequency Bayesian estimates.

Figure 5: Tropical Storm Gabrielle — measured radar reflgies in dB (top panels), and retrieved
rain ratesR in mm/hr (left panels) and mass-weighted mean drop diamBtem mm (right pan-

els).

Figure 6: Tropical Storm Gabrielle — Path-Integrated Atistions in dB (at 14 GHz in the top

left panel, 35 GHz in the top right panel; the measured a#teons according to the two surface-
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reference methods are shown in dashed lines, while the a&stgnfrom three of the DSD models
are shown in black in the case Nfyp, blue in the case dfir,, and red in the case d{) as well
as the reflectivity errorZ - Zieconstructegin dB (at 14 GHz in the left panels, 35 GHz in the right

panels).

Figure 7: Hurricane Humberto — measured radar reflectsiti@lB (top panels), and retrieved rain

ratesR in mm/hr (left panels) and mass-weighted mean drop diamBtein mm (right panels).

Figure 8: Hurricane Humberto — Path-Integrated Attenuatim dB (at 14 GHz in the top left
panel, 35 GHz in the top right panel, as in figure 6) and reflggterrorsZ - Zgconstructedn dB (at

14 GHz in the left panels, 35 GHz in the right panels).
Figure 9: Correlations betwedéhandD* in the case of Gabrielle.

Figure 10: Correlations betweé&handD* in the case of Humberto.



DSD model| high-D* relation| low-D* relation
o D* = 1.42R%15 | p* = RO044
M D* = 1.1R%Y7 | D* = 0.91R%¢
P D* = 1.45R%19 | D* = 1.31R0.066
TABLE |

RETRIEVED D*—R RELATIONS WITH RIN MM/HR AND D* IN MM..



Zm-calculated 1-way PIA (dB)

Ocean nadir — 9300 samples (8/98, 11/99, 9/01)
coeffs: 2a25 a—priori convective

surface-reference 1-way PIA (dB)

Zm-calculated 1-way PIA (dB)

Ocean nadir — 9300 samples (8/98, 11/99, 9/01)
coeffs: 2b31 max-pia

8o

surface-referenced 1-way PIA (dB)
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