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[1] Numerous studies have documented the effect of El Niño-Southern Oscillation
(ENSO) on rainfall in many regions of the globe. The question of whether ENSO is the
single most important factor in interannual rainfall variability has received less attention,
mostly because the kind of data that would be required to make such an assessment were
simply not available. Until 1979 the evidence linking El Niño with changes in rainfall
around the world came from rain gauges measuring precipitation over land masses and
a handful of islands. From 1980 until the launch of the Tropical Rainfall Measuring
Mission (TRMM) in November 1997 the remote sensing evidence was confined to ocean
rainfall because of the very poor sensitivity of the instruments over land. In this paper
we summarize the results of a principal component analysis of TRMM’s 60-month
(January 1998 to December 2002) global land and ocean remote-sensing record of
monthly rainfall accumulations. Contrary to the first principal component of the rainfall
itself, the first three indices of the anomaly are most sensitive to precipitation over the
ocean rather than over the land. With the help of archived surface station data the first
TRMM rain anomaly index is extended back several decades. Comparison of the extended
index with the Southern Oscillation Index confirms that the first principal component of
the rainfall anomaly is strongly correlated with the ENSO indices. INDEX TERMS: 1640
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1. Background

[2] Numerous studies have documented the link between
El Niño-Southern Oscillation (ENSO) and rainfall in many
regions of the globe, associating the warm phase with
drought conditions in some cases, unusually abundant
precipitation in others. The most extensive and detailed
study of this kind is undoubtedly Ropelewski and Halpert’s
[1987, 1988], in which the change in the rainfall sampled
over land and island stations within several regions around
the globe is carefully analyzed depending on the prevailing
ENSO conditions. Indeed, consistent correlations are found
between the rain anomaly and the ENSO phase in most
of the regions considered [Ropelewski and Halpert, 1987].
One could contemplate synthesizing these observations into
a global ENSO precipitation index, which would be calcu-
lated by adding the rainfall anomalies in all areas which

experience excess rain during warm ENSO phases and
subtracting the anomaly in those areas which experience a
deficit. The problem with such a proposition is that regions
which experience excess rain during warm phases do not
always experience rain deficits during cold phases and vice
versa, as Ropelewski and Halpert [1988] observed. In other
words, the maps of the rainfall anomalies during warm and
cold ENSO phases do not appear to be mirror images of one
another. An equally serious problem with the proposition of
subtracting deficit areas from excess areas is that, by
subjectively selecting only those areas which have a con-
sistently sustained correlation with ENSO, one would be
ignoring those regions which are less significantly affected
by the phenomenon, and which could be responsible for a
large proportion of the global rainfall variability. This
problem was addressed by the objective study of Dai et
al. [1997], in which a global set of yearly rainfall compiled
from land/island station data from 1900 to 1988, was
analyzed. After subtracting from the values for each station
their mean from 1900 to 1988, and normalizing by the
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corresponding standard deviation to prevent regions with
a large overall variation from overwhelming the subtle
change in regions with low rainfall, a principal component
analysis of the resulting normalized anomaly was per-
formed. Dai et al. found that the first principal component
of the normalized annual rain anomaly over the period
1900–1988 was very well correlated indeed with the
bimonthly average sea-surface temperature anomaly over
the equatorial Pacific. While these results are based
exclusively on land/island station data which leave vast
expanses of ocean unrepresented, they are compelling
indicators that ENSO is a very important factor in the
variability of rainfall. Thus the accumulated evidence begs
the question: how can one objectively quantify the impor-
tance of ENSO in the global (land and ocean) variability of
surface rainfall? Or, in other words, without any a priori
awareness of ENSO, is it possible to examine the rainfall
remote sensing record and condense its overall variability
into a simple metric, then ask with what physical process
this metric is most correlated?
[3] Until the work of Arkin [1979] and Xie and Arkin

[1997] and that of Adler et al. [1993] and Huffman et al.
[1997], this question had remained unaddressed largely
because the systems required to monitor precipitation over
the oceans simply did not exist. This dire situation changed
dramatically in the 1980s with the availability of data from
low-Earth-orbiting multiple-frequency microwave radiom-
eters such as the Special Sensor Microwave Imagers
(SSMI), and from geostationary visible/infrared (Vis/IR)
imagers. The latter are useful in the sense that they can
gauge the height of the cloud tops (and hence, at least in
convective systems, the depth of the clouds, and hence,
allowing for a quite large uncertainty in one’s estimates, the
amount of rain which these clouds are producing [see Arkin
[1979]], with frequent updates. With less frequent updates,
the low-Earth-orbiting microwave radiometers provide a
handful of radiances in which the surface emissivity effects
and the competition between the absorption/emission and
the scattering from rain and ice can be approximately sorted
out to produce an estimate of the rainfall amount at rather
poor resolution. Acknowledging the limitations of SSMI
and geostationary IR imagers, Adler et al. [1993] sought to
combine them in order to take advantage of the strengths of
each and build a ‘‘merged’’ IR-SSMI/surface-gauge data set
of truly global rainfall, the Global Precipitation Climatology
Project (GPCP) [see Huffman et al., 1997]. An ‘‘ENSO
precipitation index’’ (ESPI) is currently calculated from
GPCP, essentially by subtracting the precpitation anomaly
over the region around the Maritime Continent (10�S–
10�N � 90�E–150�W) from that over the eastern Pacific
(10�S–10�N � 160�E–100�W); the exact boundaries of the
boxes are ‘‘dynamically’’ calculated in real time to maxi-
mize the contrast. By design, ESPI correlates very well with
the ‘‘El Niño’’ and ‘‘Southern Oscillation’’ indices [Curtis
and Adler, 2000]. Going one step further, Xie and Arkin
[1997] folded in numerical model predictions as well, and
produced the ‘‘CMAP’’ global data set of monthly surface
rainfall estimates from 1979 to 1995 on a 2.5� grid. Their
maps of the seasonal difference (warm phase-cold phase) of
the rainfall anomaly averaged over the 17 years of data
incorporated in CMAP confirmed that many of the results of
Ropelewski and Halpert [1987, 1988] and Dai and Wigley’s

[2000] principal component analysis of the normalized
annual rain anomaly yielded a 20-point time series (CMAP
had by then been updated to 1998) which matches the
Southern Oscillation Index (SOI) over that period remark-
ably well. Yet, as Dai and Wigley point out, Xie and Arkin’s
seasonal maps fail to show many of the well-documented
ENSO features (notably over Australia and the western
United States), a fact which they attribute to the small
amplitude of the anomaly away from the tropics as well
as to the shortness of the time series, and which prompted
Dai and Wigley to analyze the ‘‘prenormalized’’ anomaly
rather than the anomaly itself: Specifically, they divide the
anomaly in each pixel by the 20-year standard deviation for
that pixel, thus amplifying the smaller absolute anomaly
values in the extratropical pixels and similarly attenuating
those in the tropical pixels. While the procedure has its
merits, one is still left wondering whether the data would
still exhibit good correlation between the rain anomaly and
ENSO if it were not prenormalized pixel by pixel. In
addition, these first truly global results depend ultimately
on the reliability of the sources of the data, namely the IR
and SSMI estimates. As we have already noted, the former
relies on the statistically derived correlation between cloud
top heights and surface rain, which has a large intrinsic
uncertainty and whose applicability depends on precipita-
tion type. While SSMI is more directly sensitive to the rain
itself, the poor resolution of the instrument forces one to
make homogeneity assumptions about the precipitation
which are likely to introduce large biases in the estimates
(because the average rain quantities one would like to
estimate are related in a very nonlinear way to the average
radiances one measures). Most important, over land the
relation between either the IR or the microwave radiances
and the surface precipitation is tenuous at best.

2. Tropical Rainfall Measuring Mission Analysis

[4] It is precisely to remedy the shortcomings of these
systems (their poor resolution and their lack of much direct
sensitivity to the vertical structure of precipitation) that the
Tropical Rainfall Measuring Mission (TRMM) was con-
ceived and the TRMM satellite launched in November 1997
[Simpson et al., 1988]. In addition to having a very low
resolution-enhancing orbit (originally 350 km), TRMM’s
advantage is that it carries the first spaceborne precipitation-
profiling radar (PR), in addition to a nine-channel micro-
wave radiometer (TMI) and a visible/infrared imager.
Although the clutter from the overwhelming surface echo
severely limits the swath of the PR and therefore limits its
ability to sample the precipitation as frequently as a radi-
ometer, the vertical detail with which it can probe the
atmosphere, its insensitivity to the characteristics of the
surface, and its high horizontal resolution (’4 km) make it
an ideal instrument with which to ‘‘calibrate’’ the rain
retrievals of the radiometer within the narrow common
swath of the radar [Haddad et al., 1997], and subsequently
carry this calibration over to the TMI-only retrievals over
the wide swath of the radiometer [Adler et al., 2000].
[5] Of particular interest are the surface rainfall estimates

produced by this ‘‘TRMM-combined’’ radar/radiometer
algorithm from December 1997 until February 2003. These
estimates, more specifically the ones produced by version 5
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of the algorithm (3B31v5 in the TRMM nomenclature) are
available in the form of monthly rain maps over the region
between 40�S and 40�N at a resolution of 5� � 5�. To
synthesize the information in these maps objectively, we
performed principal component analyses of the rainfall
estimates and of their anomalies. Figure 1 illustrates the
results. It displays the coefficients of the first principal
component of the TRMM-combined monthly rainfall accu-
mulation. As expected, the linear combination of pixels
which captures the greatest share of the monthly variability
(about 33%) in the rainfall is obtained essentially by

subtracting the pixels with a November-to-April rain peak
from the ones with a May-to-October rain peak, reflecting
the simple fact that the seasons are indeed the major driver
of the change in rainfall patterns from month to month.
Much more interesting is the characterization of the varia-
tion of the monthly rain anomaly. Using the 60 months’
worth of TRMM-combined data from January 1998 to
December 2002 as the baseline to establish the monthly
mean for each pixel, we performed a principal component
analysis on the monthly TRMM-combined rain anomaly.
The coefficients of the first three principal components PC1,

Figure 1. Coefficients of the first principal component of the TRMM-combined monthly rainfall
averages for the 60 months of data from January 1998 to December 2002. (Note that there are (80 �
360)/(5 � 5) = 1152 pixels, so the reference value for the coefficients is 1/

ffiffiffiffiffiffiffiffiffiffi
1152

p
’ 0.03.)

Figure 2. Coefficients of the first three principal components (top) PC1, (middle) PC2, and (bottom)
PC3 of the TRMM-combined monthly rainfall anomalies for the 60 months of data from January 1998 to
December 2002 (the reference value for the coefficients is approximately 0.03).
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PC2, and PC3 (ranked according to their variance in de-
creasing order) are shown in Figure 2. PC1 accounts for
about 14% of the variability, PC2 accounts for another 7%,
and PC3 for a further 5%. As to the coefficients themselves,
one readily notes that the variability of the rainfall anomaly
is strongly sensitive to the precipitation over the oceans, in
rather sharp contrast with the variability of the rainfall itself
which, as Figure 1 shows, is more sensitive to continental

rainfall. This is due to the more rapid and pronounced
response of the continents to summer heating (winter cool-
ing), which enhances (inhibits) the rain-producing convec-
tion. In contrast, the tropical Western Pacific and the
equatorial Eastern Pacific have large coefficients in all three
principal components of the rain anomaly. This is undoubt-
edly due in no small part to the fact that the TRMM record
starts in the middle of one of the strongest ENSO warm

Table 1. The 21 Pixels and Associated Stations and Their Corresponding Contribution to the Calculation of the Monthly Rainfall

Anomaly Variability Indexa

Longitude Latitude
PC1

Coefficient GHCN Station

TRMM Pixel ’ a + b (GHCN Station)

May to October (a, b) November to April (a, b)

57.5�W 32.5�S �0.083 Buenos Aires (1.3, 74) (0.83, 49)
122.5�E 12.5�N 0.078 Legaspi (0.8, 59) (0.56, �80)
152.5�E 7.5�N 0.078 Truk (0.5, �43) (0.58, �60)
137.5�E 7.5�N 0.073 Yap (0.47, �63) (0.78, �9)
157.5�E 7.5�N 0.071 Pohnpei (0.54, �86) (0.42, �85)
177.5�E 17.5�S 0.066 Nadi (Fiji) (0.74,0) (0.48, �45)
132.5�E 7.5�N 0.064 Koror (Palau) (0.57, �65) (0.37, �42)
82.5�E 27.5�N �0.060 Jacksonville (0.54, �15) (1.0, 39)
172.5�E 7.5�N 0.049 Majuro (0.48, �56) (0.4, �32)
52.5�W 7.5�N 0.042 Cayenne (0.43, �47) (0.3, �42)
137.5�W 7.5�S �0.039 Hiva Oa (0.47, �33) (0.37, �31)
97.5�E 12.5�S 0.038 Cocos Island (0.57, �25) (0.55, �38)
102.5�E 12.5�N 0.034 Bangkok (0.5, 3) (1.1, 27)
177.5�E 12.5�S 0.032 Rotuma (Fiji) (0.83, �79) (0.8, �72)
32.5�E 22.5�S 0.030 Inhambane (1.0, 0) (1.0, 0)
167.5�E 22.5�S 0.029 Noumea (1.13, 7) (0.52, �4)
57.5�E 12.5�S �0.027 Agalega Island (0.46, �12) (0.4, �36)
147.5�W 17.5�S �0.025 Tahiti (1.1, 25) (0.45, �16)
82.5�W 22.5�N �0.025 Key West (0.62, 11) (1.0, 16)
57.5�E 2.5�S �0.023 Mahe (0.3, �12) (0.33, �59)
132.5�E 12.5�S 0.013 Darwin (0.72, 1) (0.46, �51)

aGHCN, Global Historical Climatology Network; TRMM, Tropical Rainfall Measuring Mission.

Figure 3. Relations between the ground-station-anomaly G and the TRMM-pixel-anomaly T for Nadi
and the pixel centered at 177.5�E 17.5�S (November–April (blue) and May–October (red)).
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phases of the twentieth century. However, the coefficients of
the principal components over the various pixels within the
Pacific are not entirely consistent with the ENSO pattern.
For example, the PC1 coefficients over Micronesia/western
Pacific region are similar to those over Indonesia/New
Guinea, yet Ropelewski and Halpert have shown that while
the rain anomalies during low-index ENSO phases are
similar in both regions, they differ during high index phases.
Similarly, while the PC1 coefficients over the Fiji/New
Caledonia region are consistent with Indonesia/New Guinea,
as predicted by Ropelewski and Halpert’s [1987, 1988]

study, the similarity is less apparent in PC2 and has totally
disappeared in PC3.

3. Extending the TRMM Record

[6] In order to understand in more detail and eventually
quantify how the principal components of the rain anomaly
do correlate with the physical mechanisms which directly
affect rainfall, it is important to find a way to extend the
TRMM observations in general, and the anomaly index PC1

in particular, beyond the 5 years worth of TRMM data. We

Figure 4. The time series of the TRMM-combined anomaly PC1 (red) and its 21-station fit PC1
0 (blue).

Figure 5. The time series of the TRMM-combined anomaly PC1 (red), its 21-station fit PC1
0 (blue), and

the Southern Oscillation Index (black).

D17103 HADDAD ET AL.: VARIABILITY OF PRECIPITATION

5 of 7

D17103



attempted to achieve this by making use of the Global
Historical Climatology Network (GHCN) rainfall data set
[Peterson and Vose, 1997], which provides monthly surface
rain accumulations from over 20,000 surface stations. We
started by distinguishing those TRMM pixels whose coef-
ficients in the first three anomaly principal components are
large in absolute value, and for which there exists at least
one surface station in the GHCN database with a reasonably
complete observational record extending to December 2002
(i.e., overlapping the TRMM record) and reaching back at
least to the 1950s or earlier. In addition, if a surface station
with reliable monthly data from 1954 to 2002 fell in a pixel
with a PC1 coefficient smaller than 0.05 in absolute value, it
was retained only if the corresponding PC2 and PC3

coefficients were less than 0.03 in absolute value. We thus
identified 21 pixels (highlighted in white in Figure 2) and
21 corresponding surface stations, listed in Table 1.
[7] Note that five of these stations are in Micronesia,

whose rain anomaly Ropelewski and Halpert [1987, 1988]
found not to correlate consistently with ENSO. Next, one
must account for the fact that the surface station accumu-
lations are not perfectly representative of the amounts
TRMM would have estimated over the corresponding
pixel. If one had a large amount of 5� � 5� anomaly data
{T} (normalized relative to the TRMM-combined January

1998 to December 2002 baseline) carefully classified
according to the underlying rain regime, along with the
corresponding surface station anomalies {G} (calculated
relative to the same baseline), it would not be unreason-
able to postulate a direct relation T = f (G) with f depend-
ing on the particular location and the particular rain
regime. Under this hypothesis, the best way to estimate f
from the data is to match the cumulative distributions of G
and T [Haddad and Rosenfeld, 1997]. We performed
separate probability matches for the 21 stations for each
of two seasons, May to October and November to April.
The resulting probability-matching functions f are illustrated
in Figure 3 for the pixel 177.5�E � 17.5�S represented by
the ground station at Nadi, Fiji. Linear fits for all 46
probability-matching G-T relations are shown in Table 1.
Using them, we can now define a ‘‘proxy’’ PC1

0 for the first
TRMM-combined anomaly index PC1: Indeed, where the
latter was a combination PC1 =

P
anTn over all 1152 pixels,

define the proxy to be the sum PC1
0 = c

P21
n¼1anfn(Gn)

over the 21 stations, with the same TRMM-combined
coefficients a, and where fn is the probability-matching
station-pixel relation for the nth pixel and the appropriate
season (May to October or November to April), and
where the sum has to be renormalized by the factor
c =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1152=21

p
. The comparison between the actual

Figure 6. The TRMM-combined anomaly proxy PC1
0 (blue), ENSO precipitation index (green), and the

Nino-3 index (black).
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TRMM-combined index PC1 and its 21-station proxy PC1
0 is

shown in Figure 4. The correlation coefficient between the
two is 0.87, not perfect but quite reasonable. As Figure 4
suggests, we can now compare PC1

0 to any climatological
index over the past few decades. The obvious candidates for
such a comparison are the ENSO indices, and Figure 5
shows the graphs of PC1

0 and the Troup [1965] SOI
calculated as

SOI ¼ 10
Tahiti SLP� Darwin SLP½ � �mean

standard deviation

where the mean and standard deviation are calculated over
the period from 1887 until 1989. The scaling factor l =
0.027 which was used to change the units of PC1

0 was
obtained by minimizing the conditional mean squared
distance between l PC1

0 and SOI, over those months where
SOI exceeds 1.5 times its standard deviation (in order to
avoid fitting noise). The correlation coefficient was 0.65,
and this already respectable value exceeds 0.7 if the
correlation is calculated only for those samples where either
index exceeds 1.8 times the standard deviation of SOI.
Finally, Figure 6 shows the graphs of the 5-month negative
running average PC1

0(m) =�PC1
0(m� 2)� 	 	 	 � PC1(m + 2)

for all months m, along with the similarly averaged Nino-3
[see, e.g., Trenberth and Stepaniak, 2001], and ESPI
indices. In this case, the (unconditional) correlation between
the time series Nino-3( y) and PC1

0( y + t) reaches a maxi-
mum of 0.68 when t = 2 months. The same t = 2 months
delay applied to PC1

0( y + t) maximizes its correlation with
ESPI( y) at the slightly lower value of 0.65. These results
confirm that the global rain anomaly is well correlated with
ENSO.
[8] Thus one can conclude that the TRMM record con-

firms that ENSO is the major driver of the interannual
variability of global rainfall. It is indeed remarkable that,
although the TRMM data encompass a single major
negative ENSO phase, the first-order global measure of its
anomaly PC1 captures enough of the characteristics of
ENSO that its extension back in time PC1

0 correlates quite
well with the well-established ENSO indices over five
decades. This result relies on the validity of the TRMM
data. While to date the latter have not been shown to have
significant biases, the additive white noise in the instanta-
neous rain estimates is substantial, and does not entirely
disappear when spatial and temporal averages are taken.
However, since the principal component analysis is linear,
this uncertainty does not affect the expected value of the
principal components and cannot affect the high correlation
between PC1

0 and the ENSO indices.
[9] These conclusions should be tempered by three

observations. The first is that the record of TRMM estimates
of surface rainfall is geographically restricted to latitudes
between 40�S and 40�N. Future precipitation remote sens-
ing projects, such as the multinational Global Precipitation
Measurement mission’s plans for a constellation of satel-
lites, should extend the coverage to a much greater propor-
tion of the globe. The second observation is that our method

of extending TRMM’s 60-month record to the preceding
decades is admittedly approximate and could be greatly
improved with the advent of higher-resolution global mod-
els. Finally, the principal component analysis does highlight
those regions where the installation of denser networks of
precise in situ rainfall-measuring instruments would be most
cost-effective in validating the estimates of future remote-
sensing missions as well as those of enhanced weather
models.

[10] Acknowledgment. This work was performed at the Jet Propul-
sion Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration.
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