Precipitation Retrieval:

Reference Radar-Radiometer Core Algorithm/Radar Simulator Studies

The single most noteworthy difference between the TRMM instruments and those that GPM will have is the core satellite's 35-GHz radar, whose beams will match those of GPM-core’s TRMM-like 14-GHz radar. Indeed, while TRMM's single-frequency radar reflectivity profiles could not be exploited to estimate more than a single rain mixing ratio profile for each beam, the GPM core's dual-frequency reflectivity profiles should be invertible into a rain mixing ratio profile and a mean drop size profile. In other words, because of the dependence of the radar signature on drop size, the availability of two radar frequencies should produce unprecedented detail about the vertical change in the rain drop size. Because drop size determines drop fall velocity, this new information will take most of the guess work out of the calculation of vertical fluxes and will eliminate a major source of bias in the estimation of precipitation.

The challenge is to make optimal use of the core satellite's raw measurements in order to produce estimates of the instantaneous precipitation within the field of view of the core satellite's instruments. The latter include the TMI-like radiometer, the TRMM-like 14-GHz radar, the 35-GHz radar, and possibly a bore-sighted cross-track-scanning radiometer. Since the instruments have different swaths, one must consider separately three portions of the largest swath:

A: the “inner” region illuminated by the 14 GHz and 35 GHz radars.

B: the “intermediate” region illuminated by the 14 GHz radar only.

C: the “outer” region seen only by the radiometer channels.

Subsection 1 describes the top-level approach, subsection 2 the specific algorithm-development activities that will be required for each step of the approach, and subsection 3 the validation analyses that are required to justify the assumptions and omissions in the various portions of the algorithm. The final subsection provides a brief summary and description of the expected uncertainties in the estimates. More details can be found on the web site

http://trmm.jpl.nasa.gov/algorithms

1. Estimating means and covariances from the various combinations of instruments

The simplest way to determine how best to estimate means and covariances from a combination of instruments while retaining mathematical rigor is to use the Bayesian context. Specifically, let's group together all the rain variables that we want to estimate within one radar beam into a single vector called R, consisting of the rain mixing-ratio profiles, some information about drop size distribution (DSD) profiles such as the mean drop sizes, and some information about cloud liquid water. Let us also assume for now that we will have a reasonable estimate of the freezing level so that one will know when to interpret "rain" as snow, and "DSD" as frozen hydrometeor size distribution.

Let's similarly group together all the measured radar reflectivities within a given radar beam into a single vector called Z (so, in case A, Z consists of 14-GHz and 35-GHz reflectivity profiles and the two path-integrated attenuations (PIA); Z consists only of the 14-GHz reflectivities and PIA in case B; and it is empty in case C). Finally, call T the vector of measured radiances. In this notation, the challenge is to apply Bayes's rule to calculate the probability density function

Q = p(R | Z,T)

or, more precisely, its mean and covariance. This can be achieved in two ways.

One way is the "radiometer first" approach and proceeds by applying Bayes's rule twice, as follows:

Q = p(Z | R,T) . p(R | T) = p(Z | R,T) . p(T | R) . p(R)

    ~ GC(z)( Z - z(R;T) ) . GC(t)( T - t(R) ) . p(R)                             (1)

where "p(...|...)" is short-hand for the probability density function of whatever is to the left of the "|" conditioned on (i.e. given) whatever is to the right of it, and where, in the last equation, G represents the 0-mean  Gaussian (or log-normal, where more appropriate) distribution, with the covariance matrix as a subscript. The final expression (1), read from right to left, says the following: start with an a-priori database of the allowable R's; compare the radiances associated to each one with the measured radiances (t(R) is short-hand for the forward-radiative-transfer calculated brightness temperatures to be associated with a candidate scenario R); then compare the reflectivities associated to each R with the measured Z (in the first term, z(R;T) represents the reflectivities calculated for each R with the help of T).

As the 3 terms in equation (1) indicate, for this approach to work one must

0:
build a representative database whose role is to provide the a-priori probabilities p(R),

or equivalently (and more practically) to define the allowable R's.

1:
calculate the radiances t(R) associated to R (forward radiative transfer), as well as the

two-component covariance matrix C(t) which represents not only the uncertainties in

the calculated t's (that's the first component of C) but also the margin of error one can

tolerate because of the noise in T (the second component of C).

2:
calculate the mean reflectivities (and PIA's) z(R;T) associated to R (and T), as well as the 

covariance matrix C(z), itself the sum of the uncertainties in the z's and of the noise in Z.

The other approach to calculate Q (the "radar first" approach) proceeds by applying Bayes's rule in the reverse order:

Q = p(R | Z) . p(T | R,Z)

    ~ GC(r)( R0 - r0(Z,R1) ) . GC(t)( T - t(r0(Z,R1)) ) . p(R1)            (2)

Expression (2), read from left to right, says the following: start by inverting the reflectivities Z into as much information as possible about that subset R0 of R consisting of the variables that the radar is most sensitive to and can best constrain (the rain mixing-ratio profiles and the mean drop size profiles in case A, just the rain mixing-ratio profiles in case B); then, calling R1 the remaining rain variables (essentially the spread of the drop size spectrum and the deviation of the cloud water from the prescribed mean in case A, while in case B these "remaining variables" would consist mainly of the mean drop size), synthesize the expected radiances for the different possible values of R1 and compare with the measured brightness temperatures; and finally average over the a-priori distribution of the variables R1 which the radar could not help constrain.

For this approach to be consistent, care must be taken in subsetting the rain vector R so that the "core" rain variables R0 are independent from the “detail” rain variables R1. This is discussed in the following subsection. Once that is done, for this approach to work, one must

3:
invert a profile of reflectivities Z into a mean rain mixing-ratio profile (and a mean drop

size profile in case A) r0(Z), and calculate the covariance matrix C(r) representing the

uncertainty in the inversion (due to the noise in Z as well as to the sources of error

unaccounted for in R1).

1':
calculate the radiances t(r0(Z, R1)) associated to r0(Z) and R1, along with the two

components of the corresponding covariance matrix C(t) (namely the uncertainties in the

calculated t's, and the noise in T).

4:
determine the a-priori distribution of the "detail" rain variables R1.

How different are the two approaches to calculate Q, and which is better suited in what portion of the swath? The answer is clear in region C, the "outer swath". Since no radar measurements are available in that case, and since the "radar first" approach depends crucially on extracting detailed information from the radar before comparing with the radiometer, the only option is the "radiometer first" approach. Because the latter is the only approach available in case C, and if for no other reason than continuity across swath boundaries, one would tend to prefer the same approach for the remaining cases. Any reasons not to do so would have to stem from drawbacks that are not shared by the "radar first" approach. And indeed there are three such drawbacks.

The first is in the a-priori probabilities, represented in both cases by the third factor in the equations above. Specifically, equation (1) relies strongly on an a-priori database, which is assumed to contain all allowed rain scenarios, in proportions that are representative of actual precipitation (Bauer et al, 2001). While equation (2) similarly makes an a-priori assumption, the latter specifically does not concern the rain mixing-ratios; rather, it concerns the a-priori distribution of the few precipitation parameters that cannot be constrained by the radar.

The second drawback has to do with the amount of detail that can be kept in incorporating the radar measurements, represented by the first factor in the equations above. Specifically, equation (1) requires that the radar reflectivities be synthesized from one's candidate rain scenarios. Since these are produced by a cloud-resolving model, they have a very coarse vertical resolution, and are therefore incapable of synthesizing reflectivities on a resolution as fine as that of the radar measurements.

The third drawback is the detection problem. Indeed, the discussion so far has centered exclusively on estimating the rain, assuming that rain was properly detected in the first place. However, it is of course impossible to make quantitative estimates if one is not confident of having detected precipitation. With radar reflectivities, this process is well understood in general. On the other hand, the brightness temperatures are not as directly sensitive to precipitation per se. Indeed, the discrepancy between TRMM's PR and TMI detections has proved to be quite large, even at high rain rates (Smith and Hollis, 2002).

For these reasons, the "radiometer first" approach has to be implemented in region C, and the "radar first" approach has to be preferred in region A. While the latter might seem the more suitable approach for region B too, the continuity argument would dictate that both approaches be implemented there. This will help quantify the effect on the estimates of the a-priori assumptions and of the mismatching resolutions.

2. Algorithm development

The previous subsection already lists the specific algorithms that will need to be developed:

1:
a procedure to calculate the radiances t(R) associated to R, as well as the two components

of the covariance matrix C(t) (the uncertainties in the calculated t's and the margin of

error one can tolerate because of the noise in T).

1':
a procedure to calculate the radiances t(r0(Z, R1)) associated to r0(Z) and R1, along with

the corresponding covariance matrix C(t).

2:
a procedure to calculate the mean reflectivities (and PIA) z(R;T) associated to R (and T),

as well as the covariance matrix C(z) (uncertainties in the calculated z's + noise in Z).

3:
a procedure to invert a profile of reflectivities Z into a mean rain mixing-ratio profile

(and a mean drop size profile in case A) r0(Z), along with the covariance matrix C(r).

Procedure 1 is a requirement for the radiometer algorithm and is therefore discussed in detail in the following section.

The only difference between procedure 1' and procedure 1 is the fact that in this case the radiances need to be computed in real time.

Procedure 2 seems to require merely that one be able to synthesize radar reflectivities and attenuations from a given rain profile (essentially so-called "Z-R" and "k-R" relations). In fact, the problem is more subtle than that, because one must also assume that one is given the corresponding radiances as well. This detail is important because the low-frequency radiances are highly correlated with the expected PIA, and therefore the assumption that the radiances are specified is almost equivalent to assuming that the PIA is given, up to a not-too-large uncertainty. This effectively constrains the DSD (Iguchi et al, 2000). To complete procedure 2, one must also calculate the covariance matrix of the reflectivity profile given the rain profile. This task will be discussed in more detail in the next subsection.

Finally, procedure 3 represents one of the most important aspects of the algorithm development effort, since it entails the development of a dual-frequency profiling algorithm. The main idea behind using two radar channels is to exploit the difference in the attenuation at the two frequencies to help identify the underlying drop size distribution as well as the rain mixing ratio. Figure 1 shows the ratios of a drop's actual (Mie) radar back-scattering cross-section to the Rayleigh approximation ( ~ D6 for a drop of diameter D), and verifies that at both frequencies the Rayleigh assumption is quite adequate for most of the raindrop size range. However, as figure 1 also shows, the extinction cross-section quickly diverges from Rayleigh ( ~ D3) for drop diameters greater than 1 mm, and does so in significantly different ways at the two frequencies. These observations lead one to expect that, while the radar returns from very light rain will not be appreciably different at the two frequencies, the returns from more significant rain will be exploitably different, largely due to the different characteristics of the attenuation. This difference should allow one to estimate the rain mixing ratio as well as to characterize the drop size distribution to first order (e.g. by estimating the mean drop diameter), as a function of [image: image1.png]Mie/Rayleigh
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height (see e.g. Meneghini et al, 1997).

Figure 1: backscattering and extinction cross sections

Before proceeding with the details of this portion of the algorithm, it is important to identify the specific variables that will be estimated and which have so far been conveniently hidden under the label R = (R0, R1). In the inner swath (case A), R0 consists of the rain mixing-ratio MR and mean drop-diameter profiles D0 (i.e. a pair of variables per radar range bin), while R1 consists of the 35-GHz surface backscattering cross-section 0 along with the rain-normalized cloud water content "deviation" Cdev, defined as follows: call  the correlation coefficient of the natural logarithms of the cloud water mixing ratio ln(Mc) and the rain mixing ratio ln(MR) within a bin inside the cloud, and define the new variable Cdev as Cdev = Mc/ MR, so that ln(Cdev) and ln(MR) are by definition uncorrelated. The correlation coefficient  will need to be estimated off-line, and may turn out to depend on a range bin's relative altitude between the bottom of the cloud and the freezing level (as well as on the rain regime, maritime vs continental etc).

The reason 0 and Cdev must be singled out as the main complementary variables to the rain variables R0 is that cloud absorption is expected to have a significant impact on the radar reflectivities. Because cloud water droplets are very small relative to both wavelengths, their reflectivity is negligible. However, the cloud-water attenuation coefficient kc is proportional to the cloud water mixing ratio Mc: at 14 GHz, 0.14 < kc / Mc < 0.2 (if Mc is expressed in g/m3 and kc is in dB/km); at 35 GHz, 0.83 < kc / Mc < 1.4. For example, even a very dense cloud, carrying 2 g/m3 of water, will absorb the 14 GHz signal at a rate of only 0.28 to 0.4 dB/km (depending on the proportion of large droplets – see e.g. Fox and Illingworth, 1997). By contrast, the same cloud’s absorption rate at 35 GHz can reach 2.8 dB/km, a very large attenuation that would cause serious biases in the estimation if it is not properly accounted for. That is what the variable Cdev will accomplish. In “clear” areas, non-precipitating clouds will typically elude detection (because their droplets are small). Yet their attenuation will "cast a shadow" on the surface, thereby making it harder to estimate the integrated 35-GHz attenuation over the ocean by comparing the rainy surface return with any averaged "clear-air" (yet probably cloudy) returns. The variable 0 will track this and other uncertainties in the PIA (see e.g. Weinman et al, 1990).

While water vapor will have a non-negligible attenuating effect at 35 GHz, it is assumed that the temperature data available for each retrieval will be sufficiently accurate to determine the height of the bottom of the cloud. Since it is reasonable to assume 100% relative humidity within the cloud, the errors that the water-vapor variability will cause should be negligibly small.

We are finally ready to describe the main part of the algorithm, namely the inversion of the reflectivity profiles Z14 and Z35 into profiles of MR and D0. The measurements and unknowns are related at each range bin by simple equations:

Z14 = z14(MR, D0) . A+14
Z35 = z35(MR, D0) . A+35 . Ao35(Cdev)

in which

· the functions z14 and z35 represent the average attenuated reflectivity factors for the given range bin; they can be calculated by approximate "(Z,k)-R" relations, or retrieved from a look-up table calculated more accurately off-line.

· the factors A+14 and A+35 represent the accumulated rain attenuation from higher layers.

· the factor Ao35 represents the accumulated attenuation due to cloud and water vapor.

Figure 2 illustrates z14 and z35 when the DSD parametrization is the one used in the TRMM combined algorithm (Haddad et al, 1997). The region spanned by the black dots represents the range of the functions (z14(MR, D0), z35(MR, D0)), each dot being the target of a single (MR, D0) pair. The red dots represent that part of the range that gets "hit" twice: these are the measurements that cannot be unambiguously inverted. As noted above, they correspond to low rain mixing ratios, where the drops are too small to respond significantly differently at the two frequencies. Unfortunately, most precipitation starts out with lower mixing ratios at the top of the rainy column. To avoid these ambiguities, one can start at the surface and proceed upward. The equations can then be re-written as

Z14 / PIA14 = z14(MR, D0) . A-14(0)

Z35 / PIA35 = z35(MR, D0) . A-35(0) . Ax35(Cdev)
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where the excess attenuation now depends on how good one's estimate of the PIA is, i.e. on 0. In any case, the system can be solved at each range bin using one's look-up table (or other approximate forward expression) for the z's in terms of MR and D0, and successively updating the balance of the attenuations for the next range bin.

Figure 2: expected ambiguities in the dual frequency radar measurements

When the ancillary temperature data implies that the precipitation must consist of frozen hydrometeors, the same procedure still applies, as long as one interprets MR as the graupel/aggregates/snow mixing ratio, and D0 as the hydrometeor mean equivalent diameter. The uncertainty in the hydrometeor type and density will have to be accounted for in the covariance matrices.

Indeed, there remains to describe the procedure to calculate the covariance matrix C(r). To do that, the sources of uncertainty that have not been explicitly included in the variables R = (R0,R1) must be identified, and their effect must then be quantified as the entries of the matrix C(r). The sources of uncertainty are

1. the inexactness of the DSD representation, i.e. the higher-order moments of the DSD that would be needed, in addition to D0 (and MR) to determine exactly the measured-reflectivity model functions z14 (MR, D0) and z35 (MR, D0).

2. the inhomogeneity of the precipitation within the volume of an individual range bin (the so-called non-uniform beam-filling problem).

3. the variability of the water vapor mixing ratio, especially below the base of the cloud.

4. the practical implementation of the inversion, which would propagate any error upward or downward, in a way which would depend on the details of the specific procedure implemented (numerical instabilities etc).

A simple way to calculate such a covariance matrix is through off-line high-resolution simulations: by synthetically varying the uncertainties 1 through 4, one applies one's inversion procedure and compiles the second-order statistics of the resulting estimates. Since the latter will depend on the type and amount of precipitation, the problem would then be to index C in such a way that the pre-computed covariances that are appropriate to a particular beam can be identified in real-time. One could index C using the full precipitation profile, but that would be prohibitively resource-intensive. Fortunately, the data from TRMM strongly suggests that vertical rain profiles are not highly variable. Indeed, the first four principal components of the 250-m rain rate profiles estimated by TRMM's radar account for over 90% of the vertical variability in the precipitation (Coppens et al, 2000). This justifies grouping the simulations according to the corresponding values of the four principal components R1',...,R4', and thus indexing the covariance matrix C(R1',...,R4') using four easy-to-compute quantities.

Last, we describe the inversion in the intermediate swath. In this case (B), the definitions of both R0 and R1 need to be scaled back, because we have fewer measurements, and because these measurements are much less sensitive to variables such as cloud water and vapor. In this case, R0 consists of the rain mixing ratio profiles, while R1 consists of the rain-adjusted mean drop diameter D' (defined just like Cdev above – see Haddad et al, 1997). Essentially, D' can be viewed as the parameter which specifies a (Z,k)-R relation. 

This case is essentially identical to the case of TRMM, and we therefore intend to use the tried-and-tested radar inversion algorithm used for TRMM's PR (Iguchi et al, 2000). As equation (2) specifies, we need to start with an a-priori distribution of D'. The latter will be used to reduce the uncertainty in the measured PIA (since, given a DSD, i.e. given a value of D', the PIA can be directly expressed as an integral of the measured reflectivities, say ZIA(D')). By comparing the ZIA(D')'s to the measured PIA, a preliminary constraint on D' is obtained, as well as a hopefully sharper estimate of the PIA itself (at this stage, the two become essentially equivalent). Finally, for each value of this "D'/PIA" parameter, the reflectivity profile is inverted into a rain profile, and the mean profile is obtained by averaging according to the conditional density of D'/PIA. This is exactly the procedure followed in the case of TRMM.

3. Verification and validation studies

The first subsection identified two specific tasks that are key to justifying the assumptions in the algorithm, namely

0:
building a representative radiometer database of the allowable rain scenarios, and

calculating the covariances of the radiances associated to each database sample point.

4:
determining the a-priori probability distribution of the "detail" rain variables: 


DSD, cloud liquid, and 35-GHz surface back-scattering cross-section.

In the previous subsection we identified five more:

5:
using the description of the DSD developed in task 4 to tabulate or otherwise quantify the

14-GHz and 35-GHz radar signatures of rain within a radar range bin.

6:
for use in the inner region (A), calculating that portion of the covariance matrix C(r0,D0)

which represents the uncertainties in the radar-estimated mixing ratio profile r0 and the 

mean drop-diameter profile D0 that are unaccounted for by the cloud mixing-ratio

deviation Cdev or the surface cross-section 0.

7:
for use in the intermediate region (B) with the "radar-first" approach, calculating that

portion of the covariance matrix C(t(r0,D')), associated to the radar-estimated mixing ratio

profile r0 and the single DSD parameter D', which represents the uncertainties in the

calculated brightness temperatures t that are unaccounted for by r0 and D'.

8:
for use in the intermediate region (B) with the "radiometer-first" approach, calculating

that portion of the covariance matrix C(z(R,T)) associated to the 14-GHz radar 

reflectivities calculated from the (coarse) rain mixing ratio profile R with the help of the

radiances T, which represents the uncertainties in z that are unaccounted for in the

forward calculation.

9:
finding the conditional distribution of the cloud mixing ratio given the rain mixing ratio.

Task 0 is the main requirement for the radiometers and is discussed in the following section.

Task 4 requires the analysis of DSD data from various rain regimes, the characterization of these DSD’s using mutually independent parameters, and the calculation of the vertical correlation of the parameters (see e.g. Williams et al, 2000; Sauvageot and Koffi, 2000; Meagher and Haddad, 2002). Task 4 also requires the analysis of ocean surface back-scattering cross-section data at 35 GHz, to determine the variability of 0 and its dependence on surface wind.

Task 5 requires Mie scattering calculations to quantify the radar signatures (effective reflectivity factor and attenuation coefficient) as a function of the parameters used to describe the DSD. While calculating the signatures of the liquid portion of the cloud and precipitation is relatively straightforward, specific attention will need to be paid to the modeling of the radar response in the melting layer (see e.g. Thurai et al, 2001; Olson et al, 2001).

Task 6 was discussed in great detail at the end of the previous subsection, and requires the quantification, using forward simulations, of the effects of 1) the inexactness of the DSD representation, 2) the inhomogeneity of the precipitation, 3) the variability of the water vapor, and 4) the numerical inversion, on the radar-estimated precipitation profiles, and the subsequent efficient tabulation of the covariances as a function of the first four principal components of the rain rate profile.

Task 7 is similar to task 6, in that it requires the quantification and efficient tabulation of the covariance matrix of the calculated radiances corresponding to a given profile of rain mixing ratios and a given rain-adjusted mean drop diameter, or more specifically that portion of the covariance matrix which represents the uncertainties due to 1) the horizontal inhomogeneity of the precipitation, 2) the effect of the cloud, and 3) the variability of the surface temperature.

Task 8 is also very similar to task 6, in that it too requires the quantification and efficient tabulation, using forward simulations, of the covariances of the calculated 14-GHz radar reflectivities associated to a given database precipitation profile, and which account for the uncertainties due to 1) the vertical and horizontal inhomogeneities in the precipitation and 2) the variability in the drop-size distribution that is unaccounted for by the PIA constraint.

Task 9 involves the analysis of data or cloud-simulation results to determine the mean cloud mixing ratio (and its variance) that is associated to a given rain mixing ratio as a function of altitude (and, quite probably, of rain regime).

4. Summary and expected results
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The core reference algorithm will have to distinguish between three regions: the outer swath seen only by the radiometer(s), the inner swath seen by both radar channels along with the radiometer(s), and the intermediate swath where the radiances are supplemented by 14 GHz radar reflectivities only.

Figure 3: uncertainties for GPM-core and TRMM estimates based on preliminary simulations
Within the inner swath, the algorithm will first invert the dual-frequency radar measurements into as much detailed information about the rain and DSD profiles as they allow, keeping track of uncertainties in the PIA's and the cloud water content and the ambiguities at low rain mixing ratios. The algorithm will then synthesize the corresponding radiances and compare with the radiometer measurements to constrain the PIA’s and cloud water uncertainties.
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 Hurricane Bonnie - rain rates, rain-adjusted D0, estimate of rain-adjusted D0 (in the top panel, the transition from navy to cyan occurs around 1 mm/hr, from yellow to red around 10 mm/hr; in the middle and bottom panels, D0/R0.15 varies between 0.9 and 1.4 mm/(mm/hr)0.15)

Within the intermediate region, the algorithm will perform two parallel estimates. The "radar-first" estimate is obtained by first estimating the probability distribution of the DSD, taking into account the PIA and its uncertainty, then inverting the single frequency radar measurements into rain mixing ratio profiles for each plausible DSD, and finally synthesizing the corresponding radiances and comparing them with the radiometer measurements to constrain the DSD further. The "radiometer-first" estimate is obtained by first comparing the measured radiances with those in the appropriately constrained database, then, for each plausible match, estimating the probability distribution of the DSD with the help of the PIA and calculating the corresponding radar reflectivities, which will finally be compared to the measurements to further constrain the best-matching database precipitation profiles.

In the outer region, the algorithm is the same as the radiometer algorithm, with some subsetting of the database to reflect the higher likelihood of the precipitation being similar to that observed within the inner swaths.

Preliminary simulations using cloud-model results as well as storm "snapshots" synthesized from high-resolution airborne radar measurements and from TRMM overpasses show that the uncertainty in the estimates of the surface rain rate should be substantially smaller with the GPM core suite of instruments than it was with the TRMM radar and radiometer. Figure 3 summarizes the main conclusion: GPM-core's inner-swath algorithm should be able to estimate rain rates to within a standard deviation of about 20% for rain rates between 1.5 and 12 mm/hr (as opposed to the TRMM radar's 40%), though we will be hard-pressed to achieve  such a small uncertainty at lighter rain rates (because the corresponding 14-GHz and 35-GHz signatures are not exploitably different) or at higher rain rates (because the 35-GHz attenuation will blank the echoes).
One particular case in the simulations illustrates the DSD estimates rather well. The middle panel of figure 4 shows the simulated vertical distribution of the rain-adjusted mean drop size that was superposed on the PR-estimated precipitation during a TRMM overpass of hurricane Bonnie in August 1998, shown in the top panel. The bottom panel shows the estimates obtained from the prototype two-frequency-radar algorithm. As expected, the estimates are quite accurate away from very light and very heavy rain areas.
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 estimated vs actual rain rates for precipitation with smaller-than-average drops aloft (black) and precipitation with larger-than-average drops near the surface (red) - left panel: TRMM estimates; right panel: expected GPM-core estimates

One final expected result has to do with the possible bias in the TRMM radar estimates. Indeed, a single frequency radar cannot shed any light on the vertical variability of the DSD. As a result, any assumptions that had to be made about this variability may have resulted in undetectable biases in TRMM's single-radar-frequency estimates of the rain. GPM's two radar frequencies, on the other hand, should generically provide enough information to estimate the DSD to first-order, thus avoiding this possibly serious source of bias. Figure 5 confirms that this is indeed the case. The two panels were created by grouping together simulation cases with smaller-than-average mean drop size, especially aloft, into a "black" group, while cases with larger-than-average mean drop size, especially near the surface, were grouped into a "red" group. The left panel shows the single-radar-frequency estimates vs actual rain rates in both groups, while the right panel shows the two-frequency estimates. Manifestly, the single-frequency estimates misinterpret the different DSD variability in the two groups as a bias, while the dual radar frequencies retain enough information to prevent such a bias.
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