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Abstract 
 

Several methods have been proposed to train microwave radiometers to retrieve 
precipitation rates estimated by a radar which observed the same location at the same 
time. These radar-trained passive-microwave algorithms differ in the quantities that are 
estimated: some estimate the vertically-integrated liquid water, while others estimate the 
near-surface precipitation. Since it is no more or less credible to estimate the rain rate at 
the surface than it is to estimate the rain rate at any discrete altitude, it is particularly 
interesting to quantify to what extent it is indeed feasible to estimate vertical profiles of 
precipitation from a passive microwave radiometer, what the obstacles are, and what 
vertical resolution would be achievable. To that end, we selected five study regions, and 
started by quantifying the vertical variability of rainfall as derived from the Tropical 
Rainfall Measuring Mission (TRMM) radar. Two cases emerged: a monsoon-like case 
where the first principal component of the vertical precipitation accounts for about 90% 
of the variability, and a Mediterranean-like case where the first principal component 
accounts for about 80% of the variability. A Bayesian approach was applied to the 
TRMM Microwave Imager measurements co-located with the radar profiles. For the 
monsoon-like regions, it produced estimates of rain rates at 250 meter vertical increments 
which compared well with the TRMM radar estimates. For the Mediterranean-like 
regions, the retrieval errors were very large. We therefore proceeded to identify the main 
reason for the failure of the straightforward training method. It turns out to be the 
unknown signature of the sea surface in the portion of the beam that does not contain 
precipitation. In the problematic Mediterranean case, our original straightforward 
approach can still be applied to measurements which do not suffer from this identifiable 
partial-beam-filling. For measurements that do, we derive a filtering approach to 
neutralize the variability of the partial surface signature and thus overcome the problem.  
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0. Introduction 
 
The first satellite dedicated to the measurement of precipitation, the Tropical Rainfall 
Measuring Mission (TRMM), carries a cross-track-scanning ranging Precipitation Radar 
(PR) with a 220-km swath, as well as a nine-channel passive TRMM Microwave Imager 
(TMI) with a 700-km swath. One of the main reasons for the inclusion of the radar and 
the radiometer on the same platform was to examine and refine the assumptions behind 
the radiometer retrievals of precipitation – for example, by using the direct three-
dimensional measurements of the PR to train the radiometer within their common (and 
relatively narrow) swath, and thus improve the skill of the radiometer at estimating rain 
outside the common swath. Indeed, several groups have proposed methods to perform 
this training (see e.g. Masunaga and Kummerow, 2005; Grecu and Olson, 2006; Jiang 
and Zipser, 2006; Viltard et al, 2006). Historically, the passive-microwave estimation 
algorithms differ not only in the approach and specifics of each algorithm, but also in the 
quantities that are estimated: some try to estimate vertically-averaged quantities, most 
notably the vertically-integrated liquid water, while others try to estimate the near-surface 
rain rate. Since it is no more or less credible to estimate the rain rate at the surface than it 
is to estimate the rain rate at any discrete altitude, it seems particularly interesting to try 
to quantify to what extent it is indeed credible and feasible to estimate vertical profiles of 
precipitation from a multi-channel passive microwave radiometer, what the obstacles 
might be, and what vertical resolution would be achievable, with some quantitative 
assessment of the uncertainty in one's estimates. This paper reports on our attempt to start 
answering these questions. 
 
To place this project in perspective, it is worth recalling the first attempt to estimate 
precipitation from space with microwave radiometry, namely the Electronically Scanning 
Microwave Radiometer (ESMR), a single-frequency (19.35 GHz, i.e. 15.5 mm), single-
polarization instrument that was launched into space on the Nimbus-5 sun-synchronous 
satellite in December 1972. ESMR was the first space-borne instrument to use 
microwave absorption to estimate precipitation by quantifying the increase in optical 
depth, which corresponds to higher 19-GHz brightness temperatures. In this case, one 
channel yields one measurement for each field-of-view, which can then be related to one 
vertically-integrated precipitation quantity. The second incarnation of ESMR, flown on 
Nimbus-6, also had a single frequency, 37 GHz. However, the third incarnation, the 
Scanning Multi-channel Microwave Radiometer (SMMR), flown on Seasat and on 
Nimbus 7, consisted of a five-channel (0.81, 1.36, 1.66, 2.80, 4.54 cm), dual-polarization 
instrument. And, indeed, in clear air, the measurements from SMMR's multiple channels 
were used to estimate the surface wind speed, surface temperature and vertically-
integrated precipitable water underlying the measured brightness temperatures, a feat 
which would not have been possible with a single-channel measurement. SMMR could 
also measure cloud liquid water content in non-raining conditions. In precipitation, one 
could contemplate using the multiple channels to obtain vertical information about the 
distribution of the water, but it is not at all clear to what extent the amount of information 
in the measurements would allow one to do so, as the radiances now depend on the rain 
as well as on the surface wind, surface temperature, vertical distribution of water vapor 
etc.  
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While SMMR did not benefit from any co-located or simultaneous direct measurements, 
such as those of a rain radar, to allow one to evaluate the information content of the 
measured brightness temperatures and how correlated it is with the vertical distribution of 
the condensed water, TRMM does. Moreover, the fact that TRMM's PR has a reasonably 
high resolution (of about 4.5 km, after the satellite boost in 2001 to its current 405-km 
altitude) suggests that one should be able to analyze and perhaps quantify the 
imperfections in one's passive vertical estimates. To that end, we selected five study 
regions: the Eastern Mediterranean, the Eastern Atlantic off the continental shelf of North 
Africa, the Western Atlantic off the Southeastern seaboard of the United States, the 
Eastern Pacific off Southern California and the Yellow Sea / Sea of Japan region. We 
started by quantifying the vertical variability of rainfall as derived from the TRMM radar 
in each of these five regions. This is described in section 1. A straightforward Bayesian 
estimation approach was applied to the TMI measurements co-located with the radar 
profiles. The results are described in detail in section 2. We then proceeded to identify the 
main reason for the apparent failure of the straightforward training method for the 
Mediterranean-like regions, and derived a filtering approach to get around the problem. 
This is described in section 3, which also quantifies the residual uncertainty in our 
estimates. It is important to note that the specific Bayesian retrieval procedures which we 
apply are not necessarily optimal (except in a narrow sense), because they do depend on 
the choice we made for the form of the measurement vector. But we do identify the main 
obstacle to the vertical profiling of precipitation using passive microwave radiometry, 
and the result does suggest one procedure which produces verifiably improved estimates. 
 
 
1. Vertical variability of precipitation 
 
We selected five study regions between latitudes 30°N and 36.23°N: the Eastern 
Mediterranean, extending from 10°E to 35°E, from 1 January to 30 April; the Yellow Sea 
/ Sea of Japan area, extending from 120°E to 135°E, from 1 May to 30 September; the 
Eastern Pacific, extending from 135°W to 110°W, from 1 December to 30 April; the 
Western Atlantic, extending from 80°W to 65°W, from 1 June to 30 September; and the 
Eastern Atlantic, extending from 25°W to 10°W, from 1 November to 31 March. In each 
region, we compiled a database of co-located radar and radiometer measurements as 
illustrated in figure 1. The figure shows four contiguous and overlapping 10.7-GHz 
fields-of-view (thin solid lines) that include two consecutive beams from two consecutive 
scans, along with four contiguous and overlapping 19.4-GHz fields-of-view (dashed 
lines), four contiguous 37-GHz fields-of-view (thick solid lines) and the eight 85.5-GHz 
fields-of-view that fit within the 37-GHz footprints. We average the measured brightness 
temperature at each frequency and polarization measured in all beams, and co-register the 
result with the precipitation profile estimated by the radar within the 3 cross-track x 3 
along-track = 9 radar beams that are closest to the center of the radiometer pattern (the 
radar-estimated precipitation is averaged at each altitude across the nine radar beams). 
The TRMM radar product contains a land/ocean flag, and only retain measurements 
where all the radar beams within the four 3-dB 10.7-GHz fields of view were devoid of 
land. 
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Thus each regional database would allow one to estimate, from a set of measured TMI 
brightness temperatures as in figure 1, a vertical precipitation profile at a horizontal 
resolution corresponding to 3x3 contiguous radar beams, i.e. about 13.5 x 13.5 km2. 
Indeed, each database associates to each set of co-located radiometer measurements (as in 
figure 1) a vector of vertical rain-rate profiles obtained by horizontally averaging the 
rain-rate estimates which the TRMM standard combined radar/radiometer algorithm  
calculates within the closest 9-tuple of contiguous radar beams. The combined algorithm 
is described in Haddad et al, 1997, and the most recent validation analysis of its estimates 
can be found in Wolff and Fisher, 2008. Each vertical rain-rate profile has up to 80 bins, 
representing the rain rate within each of eighty 250m-thick layers. To quantify the 
vertical variability of the rain rate (and consequently keep the size of each database to the 
minimum necessary to reconstruct the precipitation profiles adequately), we performed a 
principal component analysis on the rain-rate profiles in each region. The results are 
summarized in table 1. 
 
In all regions, the first principal component is essentially the vertical average of the rain 
rates, as was observed in several previous analyses of the global TRMM data (see e.g. 
Coppens et al, 2000). For the Western Atlantic and the Yellow Sea / Sea of Japan 
regions, the magnitude of the coefficients of the second principal component does not 
change much in height, but the coefficients are positive from the surface to 2.25 km, and 
negative from 2.5 km up: that principal component is thus essentially the difference 
between the rain rate below about 2.25 km and the rain rate above that height (as was 
observed in the global analysis in Coppens et al, 2000). For the other three regions, the 
sign of the coefficients of the second principal component also changes only once, but it 
does so at 2 km rather than 2.25 km. In all regions, the first three principal components 
account for over 96% of the vertical variability of the precipitation. That is why we 
decided, as a first step, to use each database to match measured brightness temperatures 
to the first three principal components of the rain only, and produce an estimate of the 
vertical rain-rate profile from the estimates of the first three principal components along 
with the mean values over the entire database for the higher-order components. Thus, 
given measured brightness temperatures   
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We used data from 2007 to build the databases along with the statistical analyses, and 
applied the resulting Bayesian procedure to data from 2006. 
 
 
2. Vertical profiling using the databases – first approach 
 
The results of our first (straightforward Bayesian matching) approach are illustrated in 
figure 2a, which shows estimated vs actual rain rates for 16,374 data points in the Yellow 
Sea region, at altitudes of 0, 2000 and 4000 meters above sea level. The biases are below 
11%, and the r.m.s. uncertainty in the estimated rain rate (i.e. the rms deviation, from 
unity, of the ratio of estimated to true rain rate) is about 70%, a quite encouragingly low 
value. Figure 2b similarly compares our estimates vs actual rain rates for 17,918 data 
points in the Western Atlantic region. 
 
In contrast, the results over the Mediterranean seem quite discouraging, as figure 3 
(representing 13718 samples) illustrates. The vertically-integrated and near-surface 
comparisons are very disappointing, with a scatter so large that the mismatch cannot be 
characterized merely by bias or variance. However the comparison at 4000m suggests 
that some measurement instances may be more amenable than others to estimate the 
underlying vertical distribution of rain, as evidenced by a small but noticeable portion of 
samples clustering around the diagonal. To investigate the possible causes of the vastly 
poorer performance of our approach in this case compared to the Yellow-Sea case, we 
first verified that the principal-components reconstruction was not the culprit. Figure 4 
compares the actual near-surface rain rates with those that we reconstructed using the 
exact values of the first three principal components and the means of all the higher-order 
principal components, for a subset of data collected during 2006 over each of the two 
regions. Manifestly, the reconstructed rain rates over the Mediterranean show a broader 
scatter, consistent with the smaller portion of the total variability captured by the first 
three principal components (see table 1), but the increased scatter (unaccompanied by any 
bias) cannot explain the glaring mismatch in figure 3. 
 
We next examined the other side of the database, namely the brightness temperatures in 
the two regions. Table 2 shows the coefficients of the first two principal components in 
the two cases. Comparing the two coefficients with the largest magnitudes (highlighted in 
bold) to the remaining ones, for each region, confirms that the first principal component 
can be considered an emission index, while the second can be considered a scattering 
index. More interesting is the main contrast between the coefficients for the two regions, 
namely, in the case of the Mediterranean, the large sensitivity of the first principal 
component to the 85H channel with no sensitivity to the 85V channel: because the 
precipitation signature is largely un-polarized, contrary to that of the sea surface, this 
suggests a strong sensitivity of the brightness temperatures to the sea-surface signal – a 
signal that seems absent in the case of the Yellow Sea, and could very well explain the 
success of our first passive-microwave profiling attempt in the latter region and its failure 
in the former. 
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To verify that that is indeed the explanation for the success of our straightforward 
approach in the first case and its failure in the second, we decided to sort the data 
according to discrepancy in the 85-GHz polarizations. Spencer, Goodman and Hood 
(1989) were first to identify the need for a polarization correction for water surfaces, and 
devised a linear combination of the 85-H and 85-V channels that produces a polarization-
corrected temperature, in this case given by PCT85 = 1.818 T85V – 0.818 T85H. Rather than 
correcting for polarization, we would like to identify when the difference in the two 
polarizations is greatest, and we therefore use our heuristic weighted-polarization-
difference-in-precipitation discriminant WPDiP, empirically derived as WPDiP = T85V – 
0.83 T85H and empirically verified to fall generically below 50.5K for fields-of-view that 
are filled with rain, and well above 50.5K for clear sea surface. The right panels in figure 
5 reproduce the previous comparisons for samples over the Mediterranean satisfying 
WPDiP > 50.5, while the left panels plot only those points with WPDiP < 50.5. The 
graphs confirm that the problem is the all-too-frequently inhomogeneous composition of 
the field of view, when the radiometer captures some precipitation in part of the beam as 
well as clear surface in the remainder of the field of view. 
 
3. Neutralizing the surface contribution in a given beam 
 
Having the quantitative means to detect the problem is good, but it only filters those 
measurements where our straightforward approach produces good results (illustrated in 
the left panels of figure 5) and it does not help one make estimates for the surface-
contaminated cases (the right panels of figure 5). One could try to characterize the 
radiometric signature of the surface, for example by studying no-rain areas near the rainy 
beam of interest, and then subtract this contribution or otherwise account for it in the rain 
retrieval. The main problem with such an approach is that one cannot establish a priori 
the extent of the inhomogeneity within a given beam. In other words, if λ is the fraction 
of the field of view that contains rain, with   
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The best way to solve this problem would be to transform the measurement   
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make the contribution of the clear-surface term (the second summand on the right-hand 
side of (2)) vanish. 
 
To that end, we performed a principal-components analysis of the clear-air brightness-
temperature measurements in the Mediterranean case. Since the variability of the 
radiances is dominated by the surface wind and temperature, one would expect that, of 
the eight principal components, six should have relatively small variances. Indeed, the 
eigenvalues in decreasing order turn out to be  
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component) under clear conditions, then U8
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Instead of the original eight measurements, we end up with only six quantities with which 
to estimate the rain vertical principal components, but the advantage of the latter six is 
that they are almost entirely insensitive to the surface contribution to the original eight: 
this should prevent (or at least strongly constrain) the database comparison process from 
latching onto the portion of the variability that is due to surface effects – and 
consequently help ensure that the rain estimation is reflecting the sensitivity of the 
brightness temperature to the precipitation itself, thus producing estimates that are better 
matched to the rain. Figure 6 illustrates the results that we obtained with the same 
samples as in figure 5, using the six principal components with the lowest variance as in 
(2’) in the Bayesian procedure described in the last paragraph of section 1. While the 
performance is vastly improved, it is manifestly still imperfect – the right panels of figure 
6 show a rather wide scatter. It is almost certain that this residual uncertainty can be 
reduced significantly, because the estimation procedure which we implemented is still far 
from optimal, since we are again (as in the original application) using the first three 
principal components of the transformed observations only: this is necessary to keep the 
size of the database manageable, but it is still a rough approximation to the exact 
procedure summarized in equation (1). Implementing the latter exactly would require one 
to bin any observation according to an appropriately fine discretization of our 6-
dimensional space, an operation which would require a prohibitively large number of 
samples if we have any hope of ending up with more than one or two samples in each 6-
dimensional bin. We are actively studying ways to improve that aspect of the approach. 
This is an important issue, because the fact that the top three principal components 
capture most of the variability in our measurement vector does not necessarily imply that 
they reflect adequately that aspect of the variability which is most sensitive to the 
precipitation. Nevertheless, at any given altitude the bias in our new retrievals is less than 
5% and the r.m.s. uncertainty is about 80% (while the uncertainty in the vertically-
integrated rain rate is about 51%), very encouragingly low values. 
 
While other approaches have been considered to account for the partial-beam-filling 
problem (see e.g. Chiu and Petty, 2006, and the references therein), our approach is 
closer in its physical and mathematical justification to the method developed by Grody 
(1991) to detect precipitation – with the notable difference that our goal is to detect and 
neutralize the contribution from the clear surface within the partially rainy field of view. 
The approach does succeed in producing estimates of the vertical profiles of 
precipitation, and the uncertainty in these altitude-specific estimates is demonstrably only 
slightly greater than the uncertainty in our estimates from measurements that do not 
include a significant clear-surface contribution. 
 
 
4. Conclusions 
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The first interesting conclusion from this study is that the five regions considered, all 
lying above 30°N, fall in one of two cases: a monsoon-like case (which includes the 
Yellow Sea / Sea of Japan and the Western Atlantic) where the first principal component 
of the vertical precipitation accounts for about 90% of the variability and the second 
accounts for another 6% or so, and a Mediterranean-like case (including the Eastern 
Pacific, Eastern Atlantic and the Mediterranean) where the first principal component 
accounts for 80% of the variability and the second for 11%. When a straightforward 
Bayesian estimation approach was applied to the TMI measurements co-located with the 
radar profiles, for the monsoon-like regions it produced estimates of rain rates at 250 
meter vertical increments which, when compared to the TRMM radar estimates, showed 
a negligible bias and a standard deviation of between 60% and 70%. For the 
Mediterranean region, the errors with this direct approach were very large and prompted 
us to look for the main cause of the degraded performance and a possible solution. Using 
a weighted-polarization-difference-in-precipitation discriminant, we established that the 
problematic beams are the ones observing the clear surface in a significant portion of the 
field of view. The solution we propose relies on selecting the small-eigenvalue principal 
components obtained from an analysis of clear-surface returns, and applying the 
database-Bayesian retrieval using that smaller set of (linearly) transformed 
measurements. The results show a markedly improved performance in the Mediterranean 
region. 
 
Thus the second main conclusion is that we can effectively classify each vector of 
measured brightness temperatures according to whether it is affected by partial clear-
surface radiances, and when the unaffected measurements are considered separately, the 
vertical profiles of the underlying precipitation can be adequately retrieved using a 
straightforward Bayesian approach. On the other hand, vertical precipitation profiles can 
be retrieved from measurements that are only partially filled with precipitation, as long as 
the partial clear-surface signature is neutralized in the measurements – a process which 
we accomplish by linearly transforming the original measured brightness temperatures 
and retaining a subset of the transformed measurements, discarding those that are most 
sensitive to the variable surface emissivity. 
 
It is important to add that the estimation procedure that we implemented is not optimal 
for several reasons: foremost, the approach treats the combined-radar-radiometer vertical 
profiles of precipitation as the reference against which the passive measurements are to 
be trained – this is a shortcoming because the radar-derived profiles do not constitute 
absolute truth (see, e.g., Wolff and Fisher, 2008, for the most recent and comprehensive 
description of the comparison of the retrievals with ground validation data); another 
reason that our approach is not optimal is that we only used the first three principal 
components of the observations, instead of the full vector of measured (or transformed, in 
the modified surface-neutralizing method) brightness temperatures, to keep the size of the 
database – and the mechanics of the estimation procedure – manageable; while we were 
careful to include only measurements over water, we did not classify the observations 
according to near-surface wind or sea-surface temperature or rain regime, and our radar-
based land/ocean classifier does make simplifications which cannot prevent some 
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misclassification; perhaps most important, we performed the principal component 
analyses on the rain rates and the brightness temperatures themselves, tacitly implying 
that Gaussian statistics govern the joint behavior of these variables, when it is not 
necessarily true that the marginal distributions are normal, let alone the joint density 
functions. An approach which avoids these simplifications should improve the 
performance of the retrievals. With the validity of the concept established and the main 
problems identified, the next task is therefore to develop an effective retrieval algorithm 
that is as nearly optimal as possible. 
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Figure Captions 
 
Figure 1. Typical radiometer fields-of-view pattern for one sample in our database: four 
10.4-GHz beams (thin solid lines representing the 3-dB beam width), four 19.4-GHz 
beans (dashed lines), four 37-GHz beams (thick solid lines), and eight 85.5-GHz beams 
(shaded). This example illustrates a pattern along the satellite track, with the arrow 
indicating the direction of motion. The grid spacing approximates the resolution of the 
radar beams, with the 3x3 beams that would be associated to the depicted radiometer 
pattern shaded in light blue. 
 
Figure 2a: Estimated vs actual rain rates in the Yellow Sea / Sea of Japan region, at 0m 
ASL (top left), 2000m ASL (top right), and 4000m ASL (bottom left). 
 
Figure 2b: Estimated vs actual rain rates in the Western Atlantic, at 0m ASL (top right), 
2000m ASL (top right), and 4000m ASL (bottom left). 
 
Figure 3: Estimated vs actual rain rates in the Mediterranean region, at 0m ASL (top 
right), 4000m ASL (bottom left), and vertically integrated (top left). 
 
Figure 4: Comparison of actual surface rain rates with those obtained from the rain 
profiles reconstructed using the first three principal components only. 
 
Figure 5: Estimated vs actual rain rates in the Mediterranean region, at 2000m ASL and 
vertically-integrated, for mostly rainy samples (left) and significantly surface-
contaminated ones (right). 
 
Figure 6: Estimated vs actual rain rates for the Mediterranean using the original direct 
Bayesian method (left panels) and the modified method using the six combinations of the 
radiances which vary least in clear conditions (right panels). 
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 E Mediterranean Yellow Sea E Pacific W Atlantic E Atlantic 
1st eigenv. 36.1 78.7% 51.4 90.9% 14.3 80.7% 52.4 90.4% 19.3 82.2% 
2nd eigenv. 6.31 13.7% 3.34 5.9% 2.1 11.6% 3.64 6.3% 2.58 10.5% 
3rd eigenv. 1.77 3.9% 0.89 1.6% 0.68 3.9% 0.96 1.7% 0.83 3.5% 
4th eigenv. 0.57 1.2% 0.26 0.5% 0.23 1.3% 0.27 0.5% 0.24 1% 
5th eigenv. 0.25 0.5% 0.13 0.2% 0.1 0.6% 0.14 0.2% 0.11 0.5% 
6th eigenv. 0.16 0.3% 0.09 0.2% 0.06 0.4% 0.09 0.2% 0.08 0.3% 
7th eigenv. 0.12 0.3% 0.07 0.1% 0.05 0.3% 0.07 0.1% 0.06 0.2% 
8th eigenv. 0.1 0.2% 0.06 0.1% 0.04 0.2% 0.06 0.1% 0.05 0.2% 

 
 
 
 

 Yellow Sea / Sea of Japan Mediterranean 
 T1’ T2’   T1’   T2’ 
10V 0.241 -0.141 0.125 -0.161 
10H 0.440 -0.249 0.224 -0.288 
19V 0.304 0.043 0.262 -0.126 
19H 0.572 0.055 0.497 -0.265 
37V 0.213 0.264 0.304 -0.057 
37H 0.491 0.410 0.658 -0.009 
85V -0.167 0.503 0.046 0.554 
85H -0.114 0.650 0.302 0.704 

 
 
 
 

 U1 U2  U3 U4 U5 U6 U7 U8 
10V 0.1388 0.4847  -0.2307 0.0139 -0.2358 0.5459 -0.5410 0.2146 
10H 0.2453 0.7383  -0.2495 0.1922 0.1730 -0.3583 0.3454 -0.1344 
19V 0.2200 0.0930  0.1659 -0.4695 -0.2492 0.3319 0.2283 -0.6860 
19H 0.4267 0.1259  0.4378 -0.5508 0.3275 -0.1736 -0.1434 0.3860 
37V 0.2192 -0.0274  0.1042 0.0532 -0.6443 0.0597 0.5251 0.4930 
37H 0.4948 -0.0899  0.4792 0.6041 -0.1147 -0.0840 -0.2727 -0.2408 
85V 0.1941 -0.1528  -0.3853 -0.2624 -0.4618 -0.5950 -0.3751 -0.1171 
85H 0.5997 -0.4042  -0.5257 0.0493 0.3217 0.2620 0.1566 0.0386 

 

Table 1: Eigenvalues and the proportion of the variance corresponding to the 
first eight principal components of the vertical rain-rate vector for each region. 

Table 2: Coefficients of the first two principal components 
of the brightness temperatures for two regions in our study. 

Table 3: Coefficients of the principal components of the brightness temperatures in 
clear air in the Mediterranean.  Because U1 and U2 capture over 95.6% of the 
variability in the clear-air measurements, the deviations of (U3, … , U8) in rain from 
their mean values in clear air should be due to the precipitation. 
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